150 research outputs found

    Transmutation in 90SrF2: A density functional theory study of phase stability in ZrF2

    Get PDF
    The stability of multiple possible phases of ZrF2 is computed using density-functional theory. Motivated by radioactive samples of fluorite 90SrF2 stored at the Hanford site, we consider β− radioactive decay as the route by which the 90ZrF2 is generated. To find suitable structures for the ZrF2 compound two methodologies are used. The first follows imaginary phonon modes from the fluorite ZrF2 while the second employs random structure searching. Six possible ZrF2 phases are identified; however, none of the structures resemble the lone experimentally reported orthorhombic structure for ZrF2. Although we predict these phases to be less stable (~0.3 eV/f.u.) than a phase-decomposed mixture of β-ZrF4 and Zr metal, they still may be relevant due to the kinetics of formation via radioactive decay and raise questions as to the nature of the ZrF2 structure and the state of the samples at Hanford

    Hydrogen Bond Disruption in DNA Base Pairs from 14C Transmutation

    Get PDF
    Recent ab initio molecular dynamics simulations have shown that radioactive carbon does not normally fragment DNA bases when it decays. Motivated by this finding, density functional theory and Bader analysis have been used to quantify the effect of C → N transmutation on hydrogen bonding in DNA base pairs. We find that 14C decay has the potential to significantly alter hydrogen bonds in a variety of ways including direct proton shuttling (thymine and cytosine), thermally activated proton shuttling (guanine), and hydrogen bond breaking (cytosine). Transmutation substantially modifies both the absolute and relative strengths of the hydrogen bonding pattern, and in two instances (adenine and cytosine), the density at the critical point indicates development of mild covalent character. Since hydrogen bonding is an important component of Watson-Crick pairing, these 14C-induced modifications, while infrequent, may trigger errors in DNA transcription and replication

    Thickness Dependent OER Electrocatalysis of Epitaxial LaFeO3_{3} Thin Films

    Full text link
    Transition metal oxides have long been an area of interest for water electrocatalysis through the oxygen evolution and oxygen reduction reactions. Iron oxides, such as LaFeO3_{3}, are particularly promising due to the favorable energy alignment of the valence and conduction bands comprised of Fe3+^{3+} cations and the visible light band gap of such materials. In this work, we examine the role of band alignment on the electrocatalytic oxygen evolution reaction (OER) in the intrinsic semiconductor LaFeO3_{3} by growing epitaxial films of varying thicknesses on Nb-doped SrTiO3_{3}. Using cyclic voltammetry and electrochemical impedance spectroscopy, we find that there is a strong thickness dependence on the efficiency of electrocatalysis for OER. These measurements are understood based on interfacial band alignment in the system as confirmed by layer-resolved electron energy loss spectroscopy and electrochemical Mott-Schottky measurements. Our results demonstrate the importance of band engineering for the rational design of thin film electrocatalysts for renewable energy sources.Comment: 19 pages, 6 figures; authors Burton and Paudel contributed equally; supplement: 11 pages, 7 figure

    Percolation of Ion-Irradiation-Induced Disorder in Complex Oxide Interfaces

    Full text link
    Mastery of order-disorder processes in highly non-equilibrium nanostructured oxides has significant implications for the development of emerging energy technologies. However, we are presently limited in our ability to quantify and harness these processes at high spatial, chemical, and temporal resolution, particularly in extreme environments. Here we describe the percolation of disorder at the model oxide interface LaMnO3_3 / SrTiO3_3, which we visualize during in situ ion irradiation in the transmission electron microscope. We observe the formation of a network of disorder during the initial stages of ion irradiation and track the global progression of the system to full disorder. We couple these measurements with detailed structural and chemical probes, examining possible underlying defect mechanisms responsible for this unique percolative behavior.Comment: 32 pages, 14 figure

    Resolving diverse oxygen transport pathways across Sr-doped lanthanum ferrite and metal-perovskite heterostructures

    Full text link
    Perovskite structured transition metal oxides are important technological materials for catalysis and solid oxide fuel cell applications. Their functionality often depends on oxygen diffusivity and mobility through complex oxide heterostructures, which can be significantly impacted by structural and chemical modifications, such as doping. Further, when utilized within electrochemical cells, interfacial reactions with other components (e.g. Ni- and Cr-based alloy electrodes and interconnects) can influence the perovskite's reactivity and ion transport, leading to complex dependencies that are difficult to control in real-world environments. Here we use isotopic tracers and atom probe tomography to directly visualize oxygen diffusion and transport pathways across perovskite and metal-perovskite heterostructures, i.e. (Ni-Cr coated) Sr-doped lanthanum ferrite (LSFO). Annealing in 18O2(g) results in elemental and isotopic redistributions through oxygen exchange (OE) in the LSFO while Ni-Cr undergoes oxidation via multiple mechanisms and transport pathways. Complementary density functional theory (DFT) calculations at experimental conditions provide rationale for OE reaction mechanisms and reveal a complex interplay of different thermodynamic and kinetic drivers. Our results shed light on the fundamental coupling of defects and oxygen transport in an important class of catalytic materials.Comment: 39 pages, 10 figure
    corecore