315 research outputs found

    Atomic Interaction Networks in the Core of Protein Domains and Their Native Folds

    Get PDF
    Vastly divergent sequences populate a majority of protein folds. In the quest to identify features that are conserved within protein domains belonging to the same fold, we set out to examine the entire protein universe on a fold-by-fold basis. We report that the atomic interaction network in the solvent-unexposed core of protein domains are fold-conserved, extraordinary sequence divergence notwithstanding. Further, we find that this feature, termed protein core atomic interaction network (or PCAIN) is significantly distinguishable across different folds, thus appearing to be “signature” of a domain's native fold. As part of this study, we computed the PCAINs for 8698 representative protein domains from families across the 1018 known protein folds to construct our seed database and an automated framework was developed for PCAIN-based characterization of the protein fold universe. A test set of randomly selected domains that are not in the seed database was classified with over 97% accuracy, independent of sequence divergence. As an application of this novel fold signature, a PCAIN-based scoring scheme was developed for comparative (homology-based) structure prediction, with 1–2 angstroms (mean 1.61A) Cα RMSD generally observed between computed structures and reference crystal structures. Our results are consistent across the full spectrum of test domains including those from recent CASP experiments and most notably in the ‘twilight’ and ‘midnight’ zones wherein <30% and <10% target-template sequence identity prevails (mean twilight RMSD of 1.69A). We further demonstrate the utility of the PCAIN protocol to derive biological insight into protein structure-function relationships, by modeling the structure of the YopM effector novel E3 ligase (NEL) domain from plague-causative bacterium Yersinia Pestis and discussing its implications for host adaptive and innate immune modulation by the pathogen. Considering the several high-throughput, sequence-identity-independent applications demonstrated in this work, we suggest that the PCAIN is a fundamental fold feature that could be a valuable addition to the arsenal of protein modeling and analysis tools

    Polymorphism in B-DNA: X-ray diffraction studies on Li-DNA fibres

    Get PDF
    From X-ray diffraction studies it is generally believed that B-DNA has the structural parameters n=10 and h=3.4 Å. However, for the first time we report that polymorphism in the B-form can be observed in DNA fibres. This was achieved by the precise control of salt and humidity in fibres and by the application of the precession method of X-ray diffraction to DNA fibres. The significant result obtained is that n=10 is not observed for crystalline fibre patterns. In fact, n=10 and h=3.4 Å are not found to occur simultaneously. Instead, a range of values, n=9.6-10.0 and h=3.35 Å-3.41 Å is observed

    Interaction of non-intercalative drugs with DNA: distamycin analogues

    Get PDF
    Distamycin and netropsin are two oligopeptides which bind to DNA in a nonintercalative manner. Analogues of distamycin have been synthesized and their binding with poly d(A-T) studied using ultraviolet absorption spectroscopy. Preliminary biological activity tests on a gram positive bacteria using these analogues have also been carried out

    X-ray diffraction studies on Mycobacterium smegmatis DNA

    Get PDF
    This article does not have an abstract

    Double standard polynucleotides: two typical alternative conformations for nucleic acids

    Get PDF
    Two typical alternative conformations for double strandee polynucleotides with Watson-Crick base pairing scheme are presented. these types avoid tangling of the chains. Representative models of these types with two different views, to show the similarity and dissimilarity between these models and the Watson-Crick model, are given

    Description of ring puckering of furanose: an analytical approach

    Get PDF
    An analytical approach for the description of the ring puckerings from the endocyclic ring torsion angles of a five-membered saturated ring is given. This description is independent of any reference conformation. For the description, a revised notation for the endocyclic ring torsion angles has been suggested. The application of this method to the furanose ring is described in detail

    Quasiperiodic tilings with fourfold symmetry

    Full text link

    Diffraction properties of one-dimensional finite size fibonacci quasilattice

    Get PDF
    The diffraction patterns from Fibonacci quasilattices have been calculated. Finite-size effects are evaluated for weak and strong peaks. For a smaller number of scatterers (&lt;100) there are fluctuations in the intensities of weak and strong peaks. The fluctuations in weak peaks are greater than that in strong peaks. The fluctuations in intensities of weak and strong peaks near the origin are larger than in the corresponding cases of weak and strong peaks far away from the origin. Small shifts in peak-positions are unexpectedly found, the shifts being proportional to N-3/2 for a large number of scatterers. The diffraction pattern of a one-dimensional crystal and random structure is compared with that of the Fibonacci quasilattice. The strong peaks observed in the diffraction pattern of 1-d crystal show negligible peak-shifts, they being comparable with computational errors even when the number of scatterers is as small as 5. The implications for analysing the experiments are briefly indicated

    X-ray diffraction from single Al<SUB>6</SUB>CuLi<SUB>3</SUB> grains showing five-fold symmetry

    Get PDF
    We present here the detailed results of X-ray diffraction from single quasicrystals of Al6CuLi3. X-ray precession photographs taken down the two-, three- and five-fold axes along with rotation and zero-level Weissenberg photographs are shown. Preliminary analysis of the diffraction data rules out the twin hypothesis

    Glycans as receptors for influenza pathogenesis

    Get PDF
    Influenza A viruses, members of the Orthomyxoviridae family, are responsible for annual seasonal influenza epidemics and occasional global pandemics. The binding of viral coat glycoprotein hemagglutinin (HA) to sialylated glycan receptors on host epithelial cells is the critical initial step in the infection and transmission of these viruses. Scientists believe that a switch in the binding specificity of HA from Neu5Acα2-3Gal linked (α2-3) to Neu5Acα2-6Gal linked (α2-6) glycans is essential for the crossover of the viruses from avian to human hosts. However, studies have shown that the classification of glycan binding preference of HA based on sialic acid linkage alone is insufficient to establish a correlation between receptor specificity of HA and the efficient transmission of influenza A viruses. A recent study reported extensive diversity in the structure and composition of α2-6 glycans (which goes beyond the sialic acid linkage) in human upper respiratory epithelia and identified different glycan structural topologies. Biochemical examination of the multivalent HA binding to these diverse sialylated glycan structures also demonstrated that high affinity binding of HA to α2-6 glycans with a characteristic umbrella-like structural topology is critical for efficient human adaptation and human-human transmission of influenza A viruses. This review summarizes studies which suggest a new paradigm for understanding the role of the structure of sialylated glycan receptors in influenza virus pathogenesis.National Institute of General Medical Sciences (U.S.) (Glue Grant U54 GM62116)National Institutes of Health (U.S.) (Grant GM57073)Singapore-MIT Alliance for Research and Technolog
    corecore