30 research outputs found

    Estrogen treatment decreases matrix metalloproteinase (MMP)-9 in autoimmune demyelinating disease through estrogen receptor alpha (ERalpha).

    Get PDF
    Matrix metalloproteinases (MMPs) have a crucial function in migration of inflammatory cells into the central nervous system (CNS). Levels of MMP-9 are elevated in multiple sclerosis (MS) and predict the occurrence of new active lesions on magnetic resonance imaging (MRI). This translational study aims to determine whether in vivo treatment with the pregnancy hormone estriol affects MMP-9 levels from immune cells in patients with MS and mice with experimental autoimmune encephalomyelitis (EAE). Peripheral blood mononuclear cells (PBMCs) collected from three female MS patients treated with estriol and splenocytes from EAE mice treated with estriol, estrogen receptor (ER) alpha ligand, ERbeta ligand or vehicle were stimulated ex vivo and analyzed for levels of MMP-9. Markers of CNS infiltration were assessed using MRI in patients and immunohistochemistry in mice. Supernatants from PBMCs obtained during estriol treatment in female MS patients showed significantly decreased MMP-9 compared with pretreatment. Decreases in MMP-9 coincided with a decrease in enhancing lesion volume on MRI. Estriol treatment of mice with EAE reduced MMP-9 in supernatants from autoantigen-stimulated splenocytes, coinciding with decreased CNS infiltration by T cells and monocytes. Experiments with selective ER ligands showed that this effect was mediated through ERalpha. In conclusion, estriol acting through ERalpha to reduce MMP-9 from immune cells is one mechanism potentially underlying the estriol-mediated reduction in enhancing lesions in MS and inflammatory lesions in EAE

    A role for sex chromosome complement in the female bias in autoimmune disease

    Get PDF
    Most autoimmune diseases are more common in women than in men. This may be caused by differences in sex hormones, sex chromosomes, or both. In this study, we determined if there was a contribution of sex chromosomes to sex differences in susceptibility to two immunologically distinct disease models, experimental autoimmune encephalomyelitis (EAE) and pristane-induced lupus. Transgenic SJL mice were created to permit a comparison between XX and XY within a common gonadal type. Mice of the XX sex chromosome complement, as compared with XY, demonstrated greater susceptibility to both EAE and lupus. This is the first evidence that the XX sex chromosome complement, as compared with XY, confers greater susceptibility to autoimmune disease

    Genetics of coronary artery disease – A clinician's perspective

    Get PDF
    Coronary artery disease (CAD) is the major cause of fatality and disability among all cardiovascular diseases (CVD). Intricate interactions of genes and environment dictate the outcomes of CAD. Technological advances in the different fields of genetics including linkage studies (LS), candidate gene studies (CGS) and genome-wide association studies (GWA studies) have augmented the knowledge of pathogenesis of CAD. LS were more successful in identifying genetic variants among monogenic disease. GWA studies were relatively popular in identification of variation in polygenic disease. Until now, GWA studies recognized about 50 loci determining around 6% of the heritability in CAD. Clinical utility of the above knowledge would result in better CAD management, but validation of the variants in native population is warranted for active adoption into the clinic. The major aim of this review is to provide an adequate perspective of our current understanding and advances of genetics in CAD

    Downregulation of monocytic differentiation via modulation of CD147 by 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors.

    No full text
    CD147 is an activation induced glycoprotein that promotes the secretion and activation of matrix metalloproteinases (MMPs) and is upregulated during the differentiation of macrophages. Interestingly, some of the molecular functions of CD147 rely on its glycosylation status: the highly glycosylated forms of CD147 induce MMPs whereas the lowly glycosylated forms inhibit MMP activation. Statins are hydroxy-methylglutaryl coenzyme A reductase inhibitors that block the synthesis of mevalonate, thereby inhibiting all mevalonate-dependent pathways, including isoprenylation, N-glycosylation and cholesterol synthesis. In this study, we investigated the role of statins in the inhibition of macrophage differentiation and the associated process of MMP secretion through modulation of CD147. We observed that differentiation of the human monocytic cell line THP-1 to a macrophage phenotype led to upregulation of CD147 and CD14 and that this effect was inhibited by statins. At the molecular level, statins altered CD147 expression, structure and function by inhibiting isoprenylation and N-glycosylation. In addition, statins induced a shift of CD147 from its highly glycosylated form to its lowly glycosylated form. This shift in N-glycosylation status was accompanied by a decrease in the production and functional activity of MMP-2 and MMP-9. In conclusion, these findings describe a novel molecular mechanism of immune regulation by statins, making them interesting candidates for autoimmune disease therapy

    Polyethylene glycol-based isolation of urinary extracellular vesicles, an easily adoptable protocol

    No full text
    Urine is a highly advantageous biological specimen for biomarker research and is a non-invasive source. Most of the urinary biomarkers are non-specific, volatile and need extensive validation before clinical adoption. Extracellular vesicles are secreted by almost all cells and are involved in homoeostasis, intercellular communication, and cellular processes in healthy and pathophysiological states. Urinary extracellular vesicles (UEVs) are released from the urogenital system and mirror the molecular processes of physiological and pathological states of their source cells. Therefore, UEVs serve as a valuable source of biomarkers for the non-invasive diagnosis of various pathologies. They hold a promising source of multiplex biomarkers suitable for prognosis, diagnosis, and therapy monitoring. UEVs are easily accessible, non-invasive, and suited for longitudinal sampling. Although various techniques are available for isolating UEVs, there is yet to be a consensus on a standard and ideal protocol. We have optimized an efficient, reliable, and easily adoptable polyethylene glycol (PEG) based UEV isolation technique following MISEV guidelines. The method is suitable for various downstream applications of UEVs. This could be a cost-effective, consistent, and accessible procedure for many clinical labs and is most suited for longitudinal analysis. Adopting the protocol will pave the way for establishing UEVs as the ideal biomarker source. • Urine can be collected non-invasively and repeatedly, hence a very useful specimen for biomarker discovery. Urinary EVs (UEVs), derived from urine, offer a stable diagnostic tool, but standardised isolation and analysis approaches are warranted. • To have enough UEVs for any study, large volumes of urine sample are necessary, which limits different isolation methods by cost, yield, and time. • The protocol developed could help researchers by offering a cost-effective and dependable UEV isolation method and may lay the foundation for UEVs adoption in clinical space

    Exosome-based liquid biopsy in the management of hepatocellular carcinoma

    No full text
    Hepatocellular carcinoma (HCC) commonly presents at an advanced stage due to the lack of efficient early screening tools. Early, non-invasive biomarkers useful in the diagnosis and prognosis of HCC would be of significant benefit for HCC management. Development of exosome-based liquid biopsy as a non-invasive method for the management of HCC has gained much traction. Exosomes are small membranous vesicles secreted by most cell types including HCC cells. Exosomes serve as couriers for the intercellular transfer of important biomolecules, including, protein, nucleic acids and lipids to nearby and distant cells in the body. The molecular cargos carried by exosome have been described to play significant roles in cancer progression. Herein, we will dissect how HCC-derived exosomes confer aggressive traits such as tumour growth, invasion, immune remodelling and drug resistance to HCC cells. We review the current literature concerning exosomes as biomarkers in a diagnostic setting, evaluating their prognostic, predictive and monitoring capabilities. This review will highlight and discuss emerging research in the utility of exosome-based liquid biopsies therapeutic tools in HCC management. Here we will also focus on advances in exosome biology in preclinical studies

    NIR triggered liposome gold nanoparticles entrapping curcumin as in situ adjuvant for photothermal treatment of skin cancer

    No full text
    We report the synthesis of a biodegradable liposome gold nanoparticles for curcumin (Au-Lipos Cur NPs) delivery. This entrapped curcumin served as an in situ adjuvant for photothermal therapy. Curcumin was loaded in Au-Lipos NPs with an encapsulation efficiency of ∼70%. The gold coating enabled the NPs to specifically absorb NIR light (780 nm) by virtue of Surface Plasmon Resonance (SPR) and this light energy was converted to heat. The generated heat destabilized the liposomal core enhancing the release of encapsulated curcumin. Photothermal transduction efficacy of Au-Lipos NPs (loaded with curcumin) showed a significant temperature rise upon laser irradiation causing irreversible cellular damage. In vitro photothermal effect and intracellular uptake was evaluated in B16 F10 (melanoma) cell line. Au-Lipos Cur NPs showed significantly enhanced uptake when compared with free curcumin. Enhancement in cancer cell cytotoxicity was observed in Au-Lipos Cur NPs treated group upon laser irradiation owing to curcumin. Our findings indicate that curcumin could serve as a potential in situ adjuvant for photothermal therapy of melanoma
    corecore