6 research outputs found
The Lectin-like Receptor KLRE1 Inhibits Natural Killer Cell Cytotoxicity
We report the cloning and functional characterization in the mouse and the rat of a novel natural killer (NK) cell receptor termed KLRE1. The receptor is a type II transmembrane protein with a COOH-terminal lectin-like domain, and constitutes a novel KLR family. Rat Klre1 was mapped to the NK gene complex. By Northern blot and flow cytometry using newly generated monoclonal antibodies, KLRE1 was shown to be expressed by NK cells and a subpopulation of CD3+ cells, with pronounced interstrain variation. Western blot analysis indicated that KLRE1 can be expressed on the NK cell surface as a disulphide-linked dimer. The predicted proteins do not contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs) or a positively charged amino acid in the transmembrane domain. However, in a redirected lysis assay, the presence of whole IgG, but not of F(ab′)2 fragments of a monoclonal anti-KLRE1 antibody inhibited lysis of Fc-receptor bearing tumor target cells. Moreover, the tyrosine phosphatase SHP-1 was coimmunoprecipitated with KLRE1 from pervanadate-treated interleukin 2–activated NK cells. Together, our results indicate that KLRE1 may form a functional heterodimer with an as yet unidentified ITIM-bearing partner that recruits SHP-1 to generate an inhibitory receptor complex
Colorectal Cancer Stem Cells Are Enriched in Xenogeneic Tumors Following Chemotherapy
Patients generally die of cancer after the failure of current therapies to eliminate residual disease. A subpopulation of tumor cells, termed cancer stem cells (CSC), appears uniquely able to fuel the growth of phenotypically and histologically diverse tumors. It has been proposed, therefore, that failure to effectively treat cancer may in part be due to preferential resistance of these CSC to chemotherapeutic agents. The subpopulation of human colorectal tumor cells with an ESA(+)CD44(+) phenotype are uniquely responsible for tumorigenesis and have the capacity to generate heterogeneous tumors in a xenograft setting (i.e. CoCSC). We hypothesized that if non-tumorigenic cells are more susceptible to chemotherapeutic agents, then residual tumors might be expected to contain a higher frequency of CoCSC.Xenogeneic tumors initiated with CoCSC were allowed to reach approximately 400 mm(3), at which point mice were randomized and chemotherapeutic regimens involving cyclophosphamide or Irinotecan were initiated. Data from individual tumor phenotypic analysis and serial transplants performed in limiting dilution show that residual tumors are enriched for cells with the CoCSC phenotype and have increased tumorigenic cell frequency. Moreover, the inherent ability of residual CoCSC to generate tumors appears preserved. Aldehyde dehydrogenase 1 gene expression and enzymatic activity are elevated in CoCSC and using an in vitro culture system that maintains CoCSC as demonstrated by serial transplants and lentiviral marking of single cell-derived clones, we further show that ALDH1 enzymatic activity is a major mediator of resistance to cyclophosphamide: a classical chemotherapeutic agent.CoCSC are enriched in colon tumors following chemotherapy and remain capable of rapidly regenerating tumors from which they originated. By focusing on the biology of CoCSC, major resistance mechanisms to specific chemotherapeutic agents can be attributed to specific genes, thereby suggesting avenues for improving cancer therapy