2,134 research outputs found
A PCA-based approach for subtracting thermal background emission in high-contrast imaging data
Ground-based observations at thermal infrared wavelengths suffer from large
background radiation due to the sky, telescope and warm surfaces in the
instrument. This significantly limits the sensitivity of ground-based
observations at wavelengths longer than 3 microns. We analyzed this background
emission in infrared high contrast imaging data, show how it can be modelled
and subtracted and demonstrate that it can improve the detection of faint
sources, such as exoplanets. We applied principal component analysis to model
and subtract the thermal background emission in three archival high contrast
angular differential imaging datasets in the M and L filter. We describe how
the algorithm works and explain how it can be applied. The results of the
background subtraction are compared to the results from a conventional mean
background subtraction scheme. Finally, both methods for background subtraction
are also compared by performing complete data reductions. We analyze the
results from the M dataset of HD100546 qualitatively. For the M band dataset of
beta Pic and the L band dataset of HD169142, which was obtained with an annular
groove phase mask vortex vector coronagraph, we also calculate and analyze the
achieved signal to noise (S/N). We show that applying PCA is an effective way
to remove spatially and temporarily varying thermal background emission down to
close to the background limit. The procedure also proves to be very successful
at reconstructing the background that is hidden behind the PSF. In the complete
data reductions, we find at least qualitative improvements for HD100546 and
HD169142, however, we fail to find a significant increase in S/N of beta Pic b.
We discuss these findings and argue that in particular datasets with strongly
varying observing conditions or infrequently sampled sky background will
benefit from the new approach.Comment: 12 pages, 17 figures, 1 table, Accepted for publication in A&
Excitations of Few-Boson Systems in 1-D Harmonic and Double Wells
We examine the lowest excitations of one-dimensional few-boson systems
trapped in double wells of variable barrier height. Based on a numerically
exact multi-configurational method, we follow the whole pathway from the
non-interacting to the fermionization limit. It is shown how, in a purely
harmonic trap, the initially equidistant, degenerate levels are split up due to
interactions, but merge again for strong enough coupling. In a double well, the
low-lying spectrum is largely rearranged in the course of fermionization,
exhibiting level adhesion and (anti-)crossings. The evolution of the underlying
states is explained in analogy to the ground-state behavior. Our discussion is
complemented by illuminating the crossover from a single to a double well.Comment: 11 pages, 10 figure
Correlations in Ultracold Trapped Few-Boson Systems: Transition from Condensation to Fermionization
We study the correlation properties of the ground states of few ultracold
bosons, trapped in double wells of varying barrier height in one dimension.
Extending previous results on the signature of the transition from a
Bose-condensed state via fragmentation to the hard-core limit, we provide a
deeper understanding of that transition by relating it to the loss of coherence
in the one-body density matrix and to the emerging long-range tail in the
momentum spectrum. These are accounted for in detail by discussing the natural
orbitals and their occupations. Our discussion is complemented by an analysis
of the two-body correlation function.Comment: 22 pages, 7 figure
Quantum dynamics of two bosons in an anharmonic trap: Collective vs internal excitations
This work deals with the effects of an anharmonic trap on an interacting
two-boson system in one dimension. Our primary focus is on the role of the
induced coupling between the center of mass and the relative motion as both
anharmonicity and the (repulsive) interaction strength are varied. The ground
state reveals a strong localization in the relative coordinate, counteracting
the tendency to fragment for stronger repulsion. To explore the quantum
dynamics, we study the system's response upon (i) exciting the harmonic ground
state by continuously switching on an additional anharmonicity, and (ii)
displacing the center of mass, this way triggering collective oscillations. The
interplay between collective and internal dynamics materializes in the collapse
of oscillations, which are explained in terms of few-mode models.Comment: 8 pages, 7 figure
Tunneling dynamics of few bosons in a double well
We study few-boson tunneling in a one-dimensional double well. As we pass
from weak interactions to the fermionization limit, the Rabi oscillations first
give way to highly delayed pair tunneling (for medium coupling), whereas for
very strong correlations multi-band Rabi oscillations emerge. All this is
explained on the basis of the exact few-body spectrum and without recourse to
the conventional two-mode approximation. Two-body correlations are found
essential to the understanding of the different tunnel mechanisms. The
investigation is complemented by discussing the effect of skewing the double
well, which offers the possibility to access specific tunnel resonancesComment: 10 pages, 8 figure
Side differences and reproducibility of the Moxy muscle oximeter during cycling in trained men
Purpose Portable near-infrared spectroscopy devices allow measurements of muscle oxygen saturation (SmO2) in real time
and non-invasively. To use NIRS for typical applications including intensity control and load monitoring, the day-to-day
variability needs to be known to interpret changes confdently. This study investigates the absolute and relative testâretest
reliability of the Moxy Monitor and investigates side diferences of SmO2 at the vastus lateralis muscle of both legs in cyclists.
Methods Twelve trained cyclists and triathletes completed 3 incremental step tests with 5 min step duration starting at
1.0 W/kg with an increase of 0.5 W/kg separated by 2â7 days. SmO2 was averaged over the last minute of each stage. For
all power outputs, the intra-class coefcient (ICC), the standard error of measurement (SEM) and the minimal detectable
change (MDC) were calculated. Dominant and non-dominant leg SmO2 were compared using a three-factor ANOVA and
limits of agreement (LoA).
Results ANOVA showed no signifcant systematic diferences between trials and side. For both legs and all intensities, the
ICC ranged from 0.79 to 0.92, the SEM from 5 to 9% SmO2 and the MDC from 14 to 18% SmO2. The bias and LoA between
both legs were â2.0%±19.9% SmO2.
Conclusion Relative reliability of SmO2 was numerically good to excellent according to current standards. However, it
depends on the specifc analytical goal whether the testâretest reliability is deemed sufcient. Wide LoA indicate side differences in muscle oxygenation during exercise unexplained by leg dominance
- âŠ