21 research outputs found

    Comprehensive genomic profiles of small cell lung cancer

    Get PDF
    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Dex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer

    Rapid remineralization of multiple disseminated bone lesions after high-dose cytarabine in a patient with isolated myeloid sarcoma

    No full text
    Isolated myeloid sarcoma is a rare presentation of acute myeloid leukemia. There are limited data available concerning the prognostic relevance and the right treatment strategy for this clinical scenario. Here, we report a case of acute myeloid leukemia with extensive lesions and fractures in multiple bones in a 64-yr-old male patient. Remarkably, treatment with a high-dose cytarabine regimen led to rapid remineralization of all bone lesions and recovery of the patient's mobility within a few weeks. Thereby, surgical treatment and radiotherapy could be avoided, supporting the role of intensive induction and standard consolidation chemotherapy as first-line treatment for myeloid sarcoma

    Mechanisms of Primary Drug Resistance in FGFR1-Amplified Lung Cancer

    No full text
    Purpose: The 8p12-p11 locus is frequently amplified in squamous cell lung cancer (SQLC); the receptor tyrosine kinase fibroblast growth factor receptor 1 (FGFR1) being one of the most prominent targets of this amplification. Thus, small molecules inhibiting FGFRs have been employed to treat FGFR1-amplified SQLC. However, only about 11% of such FGFR1-amplified tumors respond to single-agent FGFR inhibition and several tumors exhibited insufficient tumor shrinkage, compatible with the existence of drug-resistant tumor cells. Experimental Design: To investigate possible mechanisms of resistance to FGFR inhibition, we studied the lung cancer cell lines DMS114 and H1581. Both cell lines are highly sensitive to three different FGFR inhibitors, but exhibit sustained residual cellular viability under treatment, indicating a subpopulation of existing drug-resistant cells. We isolated these subpopulations by treating the cells with constant high doses of FGFR inhibitors. Results: The FGFR inhibitor-resistant cells were cross-resistant and characterized by sustained MAPK pathway activation. In drug-resistant H1581 cells, we identified NRAS amplification and DUSP6 deletion, leading to MAPK pathway reactivation. Furthermore, we detected subclonal NRAS amplifications in 3 of 20 (15%) primary human FGFR1-amplified SQLC specimens. In contrast, drug-resistant DMS114 cells exhibited transcriptional upregulation of MET that drove MAPK pathway reactivation. As a consequence, we demonstrate that rational combination therapies resensitize resistant cells to treatment with FGFR inhibitors. Conclusions: We provide evidence for the existence of diverse mechanisms of primary drug resistance in FGFR1-amplified lung cancer and provide a rational strategy to improve FGFR inhibitor therapies by combination treatment. (C) 2017 AACR

    PD-L1 expression in non-small cell lung cancer: Correlations with genetic alterations

    No full text
    Inhibition of the PD-1/PD-L1 pathway may induce anticancer immune responses in non-small cell lung cancer (NSCLC). Two PD-L1 immunohistochemistry (IHC) assays have been approved as companion diagnostic tests for therapeutic anti-PD-1 antibodies. However, many aspects of PD-L1 prevalence and association with genetically defined subtypes have not been addressed systematically. Here, we analyzed PD-L1 expression in 436 genetically annotated NSCLC specimens enriched for early stages using PD-L1 antibody 5H1. Expression of PD-L1 was detected in the tumor cells (TC) (34% of cases) and in associated immune cells (IC) (49%) across all stages of NSCLC, either alone or in combination. PD-L1 IHC-positive TC, but not IC showed significantly higher PD-L1 RNA expression levels. Expression in TC was associated with TP53, KRAS and STK11 mutational status in adenocarcinomas (AD) and with NFE2L2 mutations in squamous cell carcinomas (SQ). No correlations with histological subtype, clinical characteristics and overall survival were found. The presence of PD-L1-positive IC was significantly associated with patients' smoking status in AD. The findings are in agreement with the emerging concept that tumors with high mutational burden are more likely to benefit from immunotherapy, since TP53 and KRAS mutations are linked to smoking, increased numbers of somatic mutations and expression of neoantigens. Current clinical studies focus on stage IIIB and IV NSCLC; however, PD-L1 expression occurs in earlier stages and might be a predictive biomarker in clinical trials testing (neo-) adjuvant strategies

    Elucidating the mechanisms of acquired resistance in lung adenocarcinomas

    No full text
    Abstract In lung adenocarcinomas, targeted therapy with the EGFR tyrosine kinase inhibitors (TKIs) erlotinib, gefitinib and afatinib is associated with longer progression free survival (PFS) and higher radiographic response (RR) rates when compared to standard first-line chemotherapy. In ALK rearranged lung cancers, targeted therapy with crizotinib is associated with PFS of approximately 9,7 months and RR of 60.8%. However, despite the initial success of these agents, all patients progress with a median PFS of 7 to 16 months. Acquired resistance in EGFR mutant tumors is driven by the occurrence of a secondary EGFR mutation (T790M) in about 50% of the cases and by MET amplification in 5 to 10 % of the cases. Other mechanisms include HER2 amplification, PTEN loss, phenotypic change to small cell histology, rare mutations in BRAF and AXL activation. Resistance to crizotinib, on the other hand, is caused by secondary mutations in the ALK kinase domain, by ALK or cKIT amplification or by alterations in EGFR and KRAS. Here, we made use of next generation sequencing techniques to better understand the mechanisms that drive resistance in lung adenocarcinomas treated with erlotinib or crizotinib. For this purpose, we used transbronchial or CT-guided rebiopsies from patients that had either prolonged stable disease or partial response to therapy, and developed radiographic progression under TKI therapy. Samples were analyzed by FISH and sequenced on a benchtop Illumina platform (MiSeq) in order to evaluate the presence of known mechanisms of resistance. Samples that were negative for any of the reported mechanisms were analyzed by genome, exome or trascriptome sequencing. From the sequencing output of the pan-negative samples, filtering of mutation candidates included: absence of the mutation in the pre-treatment sample (when available), expression of the candidate gene in lung adenocarcinomas, absence of the mutation in primary lung adenocarcinomas, high impact of the mutation at protein level (Polyphen), mutant allelic fraction in the tumor higher than 10%, among other factors. After filtering, validation of mutation calls was performed by Sanger sequencing. Sequencing of the erlotinib resistant samples revealed mutations in members of a functionally wide spectrum of protein families including the proteoglycan family, the ATP-binding cassette (ABC) transporters family, an Fms-related tyrosine kinase receptor and a member of the transforming growth factor beta family of cytokines. On the other hand, crizotinib resistant samples showed mutations in a cell surface receptor for macrophage-stimulating protein with tyrosine kinase activity, in a C2H2 type zinc finger gene, a semaphorin, a mitogen-activated protein kinase and a member of the SWI/SNF family of proteins. Our results evidence the possible contribution of a wide range of cellular pathways in the process of acquired resistance to EGFR and ALK inhibitors in lung adenocarcinomas. Citation Format: Sandra Ortiz-Cuarán, Lynnette Fernandez-Cuesta, Marc Bos, Lukas Heukamp, Christine M. Lovly, Martin Peifer, Masyar Gardizi, Matthias Scheffler, Ilona Dahmen, Christian Müller, Katharina König, Kerstin Albus, Alexandra Florin, Sascha Ansén, Reinhard Buettner, Jürgen Wolf, William Pao, Roman K. Thomas. Elucidating the mechanisms of acquired resistance in lung adenocarcinomas. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 956. doi:10.1158/1538-7445.AM2014-956</jats:p

    Definition of a fluorescence in-situ hybridization score identifies high- and low-level FGFR1 amplification types in squamous cell lung cancer

    No full text
    We recently reported fibroblast growth factor receptor-type 1 (FGFR1) amplification to be associated with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. This makes FGFR1 a novel target for directed therapy in these tumors. To reproducibly identify patients for clinical studies, we developed a standardized reading and evaluation strategy for FGFR1 fluorescence in-situ hybridization (FISH) and propose evaluation criteria, describe different patterns of low- and high-level amplifications and report on the prevalence of FGFR1 amplifications in pulmonary carcinomas. A total of 420 lung cancer patients including 307 squamous carcinomas, 100 adenocarcinomas of the lung and 13 carcinomas of other types were analyzed for FGFR1 amplification using a dual color FISH. We found heterogeneous and different patterns of gene copy numbers. FGFR1 amplifications were observed in 20% of pulmonary squamous carcinomas but not in adenocarcinomas. High-level amplification (as defined by an FGFR1/centromer 8 (CEN8) ratio >= 2.0, or average number of FGFR1 signals per tumor cell nucleus >= 6, or the percentage of tumor cells containing >= 15 FGFR1 signals or large clusters >= 10%) was detected at a frequency of 16% and low-level amplification (as defined by >= 5 FGFR1 signals in >= 50% of tumor cells) at a frequency of 4%. We conclude that FGFR1 amplification is one of the most frequent therapeutically tractable genetic lesions in pulmonary carcinomas. Standardized reporting of FGFR1 amplification in squamous carcinomas of the lung will become increasingly important to correlate therapeutic responses with FGFR1 inhibitors in clinical studies. Thus, our reading and evaluation strategy might serve as a basis for identifying patients for ongoing and upcoming clinical trials. Modern Pathology (2012) 25, 1473-1480; doi: 10.1038/modpathol.2012.102; published online 8 June 201
    corecore