288 research outputs found

    Not only Body Weight Perception but also Body Mass Index is Relevant to Suicidal Ideation and Self-Harming Behavior in Japanese Adolescents

    Get PDF
    Whether a low body mass index (BMI) is directly associated with a high risk of suicidal ideation or self-harming behavior in adolescents is still inconclusive. This study has, therefore, evaluated the relevance of BMI to suicidal ideation and self-harming behavior after controlling for body weight perception (BWP) and other potential confounding factors. BMI, BWP, suicidal ideation, and self-harming behavior were all assessed using a self-report questionnaire administered to 18,104 Japanese adolescents. Potential confounding factors were also evaluated. The data were then analyzed using bi-variate and multivariate logistic regression. Low BMI was associated with suicidal ideation and deliberate self-harm when controlling for sex, age, drug use, emotional distress, and BWP. Low BMI may be an independent risk factor for suicidal ideation and deliberate self-harming behavior in Japanese adolescents.ArticleJOURNAL OF NERVOUS AND MENTAL DISEASE. 200(4):305-309 (2012)journal articl

    ERRγ agonist under mechanical stretching manifests hypertrophic cardiomyopathy phenotypes of engineered cardiac tissue through maturation

    Get PDF
    iPS細胞から成熟した人工心筋組織の作製方法の開発 肥大型心筋症の治療法開発への利用に期待. 京都大学プレスリリース. 2023-10-06.Stretching and stimulating engineered heart tissues to accurately portray hypertrophic cardiomyopathy. 京都大学プレスリリース. 2023-10-17.Engineered cardiac tissue (ECT) using human induced pluripotent stem cell-derived cardiomyocytes is a promising tool for modeling heart disease. However, tissue immaturity makes robust disease modeling difficult. Here, we established a method for modeling hypertrophic cardiomyopathy (HCM) malignant (MYH7 R719Q) and nonmalignant (MYBPC3 G115∗) pathogenic sarcomere gene mutations by accelerating ECT maturation using an ERRγ agonist, T112, and mechanical stretching. ECTs treated with T112 under 10% elongation stimulation exhibited more organized and mature characteristics. Whereas matured ECTs with the MYH7 R719Q mutation showed broad HCM phenotypes, including hypertrophy, hypercontraction, diastolic dysfunction, myofibril misalignment, fibrotic change, and glycolytic activation, matured MYBPC3 G115∗ ECTs displayed limited phenotypes, which were primarily observed only under our new maturation protocol (i.e., hypertrophy). Altogether, ERRγ activation combined with mechanical stimulation enhanced ECT maturation, leading to a more accurate manifestation of HCM phenotypes, including non-cardiomyocyte activation, consistent with clinical observations

    Effects of time-compressed speech training on multiple functional and structural neural mechanisms involving the left superior temporal gyrus

    Get PDF
    Time-compressed speech is an artificial form of rapidly presented speech. Training with time-compressed speech (TCSSL) in a second language leads to adaptation toward TCSSL. Here, we newly investigated the effects of 4 weeks of training with TCSSL on diverse cognitive functions and neural systems using the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), resting-state functional connectivity (RSFC) with the left superior temporal gyrus (STG), fractional anisotropy (FA), and regional gray matter volume (rGMV) of young adults by magnetic resonance imaging. There were no significant differences in change of performance of measures of cognitive functions or second language skills after training with TCSSL compared with that of the active control group. However, compared with the active control group, training with TCSSL was associated with increased fALFF, RSFC, and FA and decreased rGMV involving areas in the left STG. These results lacked evidence of a far transfer effect of time-compressed speech training on a wide range of cognitive functions and second language skills in young adults. However, these results demonstrated effects of time-compressed speech training on gray and white matter structures as well as on resting-state intrinsic activity and connectivity involving the left STG, which plays a key role in listening comprehension

    ERRγ enhances cardiac maturation with T-tubule formation in human iPSC-derived cardiomyocytes

    Get PDF
    ヒトのiPS細胞から新生児レベルまで成熟した心筋細胞を作製する. 京都大学プレスリリース. 2021-06-21.Lowering the cost of heart cell therapies. 京都大学プレスリリース. 2021-06-21.One of the earliest maturation steps in cardiomyocytes (CMs) is the sarcomere protein isoform switch between TNNI1 and TNNI3 (fetal and neonatal/adult troponin I). Here, we generate human induced pluripotent stem cells (hiPSCs) carrying a TNNI1[EmGFP] and TNNI3[mCherry] double reporter to monitor and isolate mature sub-populations during cardiac differentiation. Extensive drug screening identifies two compounds, an estrogen-related receptor gamma (ERRγ) agonist and an S-phase kinase-associated protein 2 inhibitor, that enhances cardiac maturation and a significant change to TNNI3 expression. Expression, morphological, functional, and molecular analyses indicate that hiPSC-CMs treated with the ERRγ agonist show a larger cell size, longer sarcomere length, the presence of transverse tubules, and enhanced metabolic function and contractile and electrical properties. Here, we show that ERRγ-treated hiPSC-CMs have a mature cellular property consistent with neonatal CMs and are useful for disease modeling and regenerative medicine
    corecore