575 research outputs found

    Calculation of the Self-energy of Open Quantum Systems

    Full text link
    We propose an easy method of calculating the self-energy of semi-infinite leads attached to a mesoscopic system.Comment: 6 pages, 2 figures, published in J. Phys. Soc. Jp

    Some properties of the resonant state in quantum mechanics and its computation

    Full text link
    The resonant state of the open quantum system is studied from the viewpoint of the outgoing momentum flux. We show that the number of particles is conserved for a resonant state, if we use an expanding volume of integration in order to take account of the outgoing momentum flux; the number of particles would decay exponentially in a fixed volume of integration. Moreover, we introduce new numerical methods of treating the resonant state with the use of the effective potential. We first give a numerical method of finding a resonance pole in the complex energy plane. The method seeks an energy eigenvalue iteratively. We found that our method leads to a super-convergence, the convergence exponential with respect to the iteration step. The present method is completely independent of commonly used complex scaling. We also give a numerical trick for computing the time evolution of the resonant state in a limited spatial area. Since the wave function of the resonant state is diverging away from the scattering potential, it has been previously difficult to follow its time evolution numerically in a finite area.Comment: 20 pages, 12 figures embedde

    Large orbital magnetic moments in carbon nanotubes generated by resonant transport

    Full text link
    The nonequilibrium Green's function method is used to study the ballistic transport in metallic carbon nanotubes when a current is injected from the electrodes with finite bias voltages. We reveal, both analytically and numerically, that large loop currents circulating around the tube are induced, which come from a quantum mechanical interference and are much larger than the current along the tube axis when the injected electron is resonant with a time-reversed pair of degenerate states, which are, in fact, inherent in the zigzag and chiral nanotubes. This results in large orbital magnetic moments, making the nanotube a molecular solenoid.Comment: 5 pages, 4 figures; typos correcte

    Pattern formation in crystal growth under parabolic shear flow

    Full text link
    Morphological instability of the solid-liquid interface occuring in a crystal growing from an undercooled thin liquid being bounded on one side by a free surface and flowing down inclined plane is investigated by a linear stability analysis under shear flow. It is found that restoring forces due to gravity and surface tension is important factor for stabilization of the solid-liquid interface on long length scales. This is a new stabilizing effect different from the Gibbs-Thomson effect. A particular long wavelength mode of about 1 cm of wavy pattern observed on the surface of icicles covered with thin layer of flowing water is obtained from the dispersion relation including the effect of flow and restoring forces.Comment: 30 pages, 4 figure

    Multiwavelength observation from radio through very-high-energy Gamma-ray of OJ 287 during the 12-year cycle flare in 2007

    Full text link
    We performed simultaneous multiwavelength observations of OJ 287 with the Nobeyama Millimeter Array for radio, the KANATA telescope and the KVA telescope for optical, the Suzaku satellite for X-ray and the MAGIC telescope for very high energy (VHE) gamma-ray in 2007. The observations were conducted for a quiescent state in April and in a flaring state in November-December. We clearly observed increase of fluxes from radio to X-ray bands during the flaring state while MAGIC could not detect significant VHE gamma-ray emission from the source. We could derive an upper limit (95% confidence level) of 1.7% of the Crab Nebula flux above 150 GeV from about 41.2 hours of the MAGIC observation. A simple SSC model suggests that the observed flaring activity could be caused by evolutions in the distribution of the electron population rather than changes of the magnetic field strength or Doppler beaming factor in the jet.Comment: Contribution to the 31st ICRC, Lodz, Poland, July 200

    Resonant-state expansion of the Green's function of open quantum systems

    Full text link
    Our series of recent work on the transmission coefficient of open quantum systems in one dimension will be reviewed. The transmission coefficient is equivalent to the conductance of a quantum dot connected to leads of quantum wires. We will show that the transmission coefficient is given by a sum over all discrete eigenstates without a background integral. An apparent "background" is in fact not a background but generated by tails of various resonance peaks. By using the expression, we will show that the Fano asymmetry of a resonance peak is caused by the interference between various discrete eigenstates. In particular, an unstable resonance can strongly skew the peak of a nearby resonance.Comment: 7 pages, 7 figures. Submitted to International Journal of Theoretical Physics as an article in the Proceedings for PHHQP 2010 (http://www.math.zju.edu.cn/wjd/

    Infrared/optical - X-ray simultaneous observations of X-ray flares in GRB 071112C and GRB 080506

    Get PDF
    We investigate the origin of short X-ray flares which are occasionally observed in early stages of afterglows of gamma-ray bursts (GRBs). We observed two events, GRB 071112C and GRB 080506, before the start of X-ray flares in the optical and near-infrared (NIR) bands with the 1.5-m Kanata telescope. In conjunction with published X-ray and optical data, we analyzed densely sampled light curves of the early afterglows and spectral energy distributions (SEDs) in the NIR-X-ray ranges. We found that the SEDs had a break between the optical and X-ray bands in the normal decay phases of both GRBs regardless of the model for the correction of the interstellar extinction in host galaxies of GRBs. In the X-ray flares, X-ray flux increased by 3 and 15 times in the case of GRB 071112C and 080506, respectively, and the X-ray spectra became harder than those in the normal decay phases. No significant variation in the optical-NIR range was detected together with the X-ray flares. These results suggest that the X-ray flares were associated with either late internal shocks or external shocks from two-component jets.Comment: 10 pages, 5 figures, accepted to Astronomy and Astrophysic
    • …
    corecore