9 research outputs found

    Assessment of efficacy of proarrhythmia biomarkers in isolated rabbit hearts with attenuated repolarization reserve

    Get PDF
    Isolated hearts with reduced repolarization reserve would be suitable for assessing the proarrhythmic liability of drugs. However, it is not known which proarrhythmia biomarkers indicate the increased susceptibility to torsades de pointes arrhythmia (TdP) in such experimental setting. Thus, we estimated the efficacy of proarrhythmia biomarkers in isolated hearts with attenuated repolarization reserve.Langendorff-perfused rabbit hearts were used. Repolarization reserve was reduced by concomitant inhibition of the rapid (IKr) and slow (IKs) delayed rectifier potassium currents by dofetilide and HMR-1556, respectively. Rate corrected QT (QTc) interval and beat-to-beat variability of the QT interval measured in sinus rhythm or irrespective of rhythm even during arrhythmias (sinus and absolute QT variability, respectively) were tested.QTc failed to predict increased proarrhythmic risk. Sinus QT variability indicated proarrhythmic liability when low concentration of dofetilide was used. However, when arrhythmias compromised sinus variability measurement during co-perfusion of catecholamines and elevated concentration of dofetilide, only absolute QT variability indicated increased proarrhythmic risk. ABSOLUTE: QT variability parameters appear to be the most practical and sensitive biomarkers of proarrhythmic liability in rabbit hearts with reduced repolarization reserve. Absolute QT variability parameters could serve as surrogates for TdP in drug-safety investigations in isolated rabbit hearts with attenuated repolarization reserve

    Hyperventilation assists proarrhythmia development during delayed repolarization in clofilium-treated, anaesthetized, mechanically ventilated rabbits

    Get PDF
    Hyperventilation reduces partial pressure of CO2 (PCO2) in the blood, which results in hypokalaemia. Hypokalaemia helps the development of the life-threatening torsades de pointes type ventricular arrhythmia (TdP) evoked by repolarization delaying drugs. This implies that hyperventilation may assist the development of proarrhythmic events. Therefore, this study experimentally investigated the effect of hyperventilation on proarrhythmia development during delayed repolarization. Phenylephrine (an alpha1-adrenoceptor agonist) and clofilium (as a representative repolarization delaying agent inhibiting the rapid component of the delayed rectifier potassium current, IKr) were administered intravenously to pentobarbital-anaesthetized, mechanically ventilated, open chest rabbits. ECG was recorded, and the onset times and incidences of the arrhythmias were determined. Serum K+, pH and PCO2 were measured in arterial blood samples. Clofilium prolonged the rate corrected QT interval. TdP occurred in 15 animals (TdP+ group), and did not occur in 14 animals (TdP- group). We found a strong, positive, linear correlation between serum K+ and PCO2. There was no relationship between the occurrence of TdP and the baseline K+ and PCO2 values. However, a positive, linear correlation was found between the onset time of the first arrhythmias and the K+ and PCO2 values. The regression lines describing the relationship between PCO2 and onset time of first arrhythmias were parallel in the TdP+ and TdP- groups, but the same PCO2 resulted in earlier arrhythmia onset in the TdP+ group than in the TdP- group. We conclude that hyperventilation and hypocapnia with the resultant hypokalaemia assist the multifactorial process of proarrhythmia development during delayed repolarization. This implies that PCO2 and serum K+ should be controlled tightly during mechanical ventilation in experimental investigations and clinical settings when repolarization-delaying drugs are applied

    Ventricular cycle length irregularity affects the correlation between ventricular rate and coronary flow in isolated, Langendorff perfused guinea pig hearts

    Get PDF
    AbstractIntroduction Heart rate affects coronary flow, but the mechanism is complex. The relationship between rhythm and flow is unclear, especially in experimental settings used for determining drug actions. The present study examined whether ventricular irregularity influences coronary flow independently of heart rate. Methods Guinea pig hearts were perfused (Langendorff mode) at constant pressure. Hypokalemic Krebs solution facilitated spontaneous development of arrhythmias. The ECG, left ventricular and perfusion pressures were recorded, and the coronary flow was measured. Beat-to-beat ventricular cycle length variability was quantified. Hearts were retrospectively allocated to arbitrary ‘Low’ or ‘High’ RR variability groups. Results A positive linear correlation was found between mean ventricular rate and coronary flow. The slope of the regression line was significantly greater in the ‘High’ versus ‘Low’ RR variability group, with greater coronary flow values in the ‘High’ RR variability group in the physiological heart rate range. During regular rhythm, left ventricular pressure exceeded perfusion pressure and prevented coronary perfusion at peak systole. However, ventricular irregularity significantly increased the number of beats in which left ventricular pressure remained below perfusion pressure, facilitating coronary perfusion. Discussion In isolated hearts, cycle length irregularity increases the slope of the positive linear correlation between mean ventricular rate and coronary flow via producing beats in which left ventricular pressure remains below perfusion pressure. This means that changes in rhythm have the capacity to influence coronary flow independently of heart rate in isolated hearts perfused at constant pressure, which should be noted in drug studies on arrhythmias performed in Langendorff hearts

    New in vitro model for proarrhythmia safety screening: IKs inhibition potentiates the QTc prolonging effect of IKr inhibitors in isolated guinea pig hearts

    No full text
    Introduction: Preclinical in vivo QT measurement as a proarrhythmia essay is expensive and not reliable enough. The aim of the present study was to develop a sensitive, cost-effective, Langendorff perfused guinea pig heart model for proarrhythmia safety screening. Methods: Low concentrations of dofetilide and cisapride (inhibitors of the rapid delayed rectifier potassium current, IKr) were tested alone and co-perfused with HMR-1556 (inhibitor of the slow delayed rectifier potassium current, IKs) in Langendorff perfused guinea pig hearts. The electrocardiographic rate corrected QT (QTc) interval, the Tpeak-Tend interval and the beat-to-beat variability and instability (BVI) of the QT interval were determined in sinus rhythm. Results: Dofetilide and HMR-1556 alone or co-perfused, prolonged the QTc interval by 20 ± 2%, 10 ± 1% and 55 ± 10%, respectively. Similarly, cisapride and HMR-1556 alone or co-perfused, prolonged the QTc interval by 11 ± 3%, 11 ± 4% and 38 ± 6%, respectively. Catecholamine-induced fast heart rate abolished the QTc prolonging effects of the IKr inhibitors, but augmented the QTc prolongation during IKs inhibition. None of the drug perfusions increased significantly the Tpeak-Tend interval and the sinus BVI of the QT interval. Discussion: IKs inhibition increased the QTc prolonging effect of IKr inhibitors in a super-additive (synergistic) manner, and the QTc interval was superior to other proarrhythmia biomarkers measured in sinus rhythm in isolated guinea pig hearts. The effect of catecholamines on the QTc facilitated differentiation between IKr and IKs inhibitors. Thus, QTc measurement in Langendorff perfused guinea pig hearts with pharmacologically attenuated repolarization reserve and periodic catecholamine perfusion seems to be suitable for preclinical proarrhythmia screening. © 2016 Elsevier Inc

    Cardiac electrophysiological remodeling associated with enhanced arrhythmia susceptibility in a canine model of elite exercise

    Get PDF
    The health benefits of regular physical exercise are well known. Even so, there is increasing evidence that the exercise regimes of elite athletes can evoke cardiac arrhythmias including ventricular fibrillation and even sudden cardiac death (SCD). The mechanism of exercise-induced arrhythmia and SCD is poorly understood. Here, we show that chronic training in a canine model (12 sedentary and 12 trained dogs) that mimics the regime of elite athletes induces electrophysiological remodeling (measured by ECG, patch-clamp and immunocytochemical techniques) resulting in increases of both the trigger and the substrate for ventricular arrhythmias. Thus, 4 months sustained training lengthened ventricular repolarization (QTc: 237.1±3.4 ms vs. 213.6±2.8 ms, n=12; APD90: 472.8±29.6 ms vs. 370.1±32.7 ms, n=29 vs. 25), decreased transient outward potassium current (6.4±0.5 pA/pF vs. 8.8±0.9 pA/pF at 50 mV, n=54 vs. 42) and increased the short term variability of repolarization (29.5±3.8 ms vs. 17.5±4.0 ms, n=27 vs. 18). Left ventricular fibrosis and HCN4 protein expression were also enhanced. These changes were associated with enhanced ectopic activity (number of escape beats from 0/hour to 29.7±20.3/hour) in vivo and arrhythmia susceptibility (elicited ventricular fibrillation: 3 of 10 sedentary dogs vs. 6 of 10 trained dogs). Our findings provide in vivo, cellular electrophysiological and molecular biological evidence for the enhanced susceptibility to ventricular arrhythmia in an experimental large animal model of endurance training

    Cardiac electrophysiological remodeling associated with enhanced arrhythmia susceptibility in a canine model of elite exercise

    No full text
    The health benefits of regular physical exercise are well known. Even so, there is increasing evidence that the exercise regimes of elite athletes can evoke cardiac arrhythmias including ventricular fibrillation and even sudden cardiac death (SCD). The mechanism of exercise-induced arrhythmia and SCD is poorly understood. Here, we show that chronic training in a canine model (12 sedentary and 12 trained dogs) that mimics the regime of elite athletes induces electrophysiological remodeling (measured by ECG, patch-clamp, and immunocytochemical techniques) resulting in increases of both the trigger and the substrate for ventricular arrhythmias. Thus, 4 months sustained training lengthened ventricular repolarization (QTc: 237.1±3.4 ms vs. 213.6±2.8 ms, n=12; APD90: 472.8±29.6 ms vs. 370.1±32.7 ms, n=29 vs. 25), decreased transient outward potassium current (6.4±0.5 pA/pF vs. 8.8±0.9 pA/pF at 50 mV, n=54 vs. 42), and increased the short-term variability of repolarization (29.5±3.8 ms vs. 17.5±4.0 ms, n=27 vs. 18). Left ventricular fibrosis and HCN4 protein expression were also enhanced. These changes were associated with enhanced ectopic activity (number of escape beats from 0/hr to 29.7±20.3/hr) in vivo and arrhythmia susceptibility (elicited ventricular fibrillation: 3 of 10 sedentary dogs vs. 6 of 10 trained dogs). Our findings provide in vivo, cellular electrophysiological and molecular biological evidence for the enhanced susceptibility to ventricular arrhythmia in an experimental large animal model of endurance training
    corecore