7 research outputs found

    Present outcome from the NUMEN R&D phase

    No full text
    International audienceThe NUMEN experiment aims at measuring double charge exchange reaction cross sections using heavy-ion beams of unprecedented intensity on specific isotopes. In order to get data-sets with good statistical significance from challengingly low cross sections it asks for the upgrade of the pre-existing magnetic spectrometer MAGNEX at INFN-LNS, in Catania. These reactions prove to be a way of getting information on the nuclear matrix elements of the neutrino-less double beta decay, the most promising probe to establish the Majorana or Dirac nature of the neutrino, and to evaluate the effective neutrino mass. A new setup for the target system is under development and adequate detectors are under study for the tracking and the identification of heavy ions at the expected rate up to 5 Mpps and for gamma-ray measurements. The tracker is a time projection chamber with electron amplification based on a triple Thick Gas Electron Multiplier (THGEM) foil, the particle identification is performed with telescopes composed of Silicon Carbide (SiC) and Thallium doped Cesium Iodide (CsI(Tl)) sensors, the gamma-ray detection is sustained with Cerium doped Lantanum Bromide (LaBr3(Ce)) scintillator detectors. Here a selection of results of the R&D phase and the integration study are presented. •NUMEN measures double charge exchange reaction cross sections using heavy-ion beams.•The higher interaction rate demands a complete upgrade of the MAGNEX spectrometer.•A new scattering chamber will host an innovative target system.•The tracker is a time projection chamber based on a THGEM foil

    Upgrade of the MAGNEX spectrometer toward the high-intensity phase of NUMEN

    Get PDF
    The NUMEN experimental activity with accelerated beams is performed at INFN–Laboratori Nazionali del Sud (LNS) in Catania using the Superconducting Cyclotron and the MAGNEX magnetic spectrometer. The scientific motivation of NUMEN is to extract experiment-driven information on the nuclear matrix elements entering in the expression of the 0νββ decay half-life. The reaction cross sections involved, especially for the double charge exchange process, are very low, thus limiting the present exploration to a few selected isotopes of interest in the context of typically low-yield experimental runs. In order to make feasible a systematic study of all the candidate nuclei, a major upgrade of the LNS facility is foreseen to increase the experimental yield by more than two orders of magnitude. To this purpose, frontier technologies are being developed for the accelerator and the detection systems. An updated description of the choices derived from the recent R&D activity on the target system and MAGNEX focal plane detector is given

    Response of G-NUMEN LaBr3_3(Ce) detectors to high counting rates

    No full text
    International audienceThe G-NUMEN array is the future gamma spectrometer of the NUMEN experiment (Nuclear Matrix Element for the Neutrinoless double beta decay), to be installed around the object point of the MAGNEX magnetic spectrometer at the INFN-LNS laboratory. This project aims at exploring Double Charge Exchange (DCE) reactions in order to obtain crucial information about the neutrinoless double beta decay (0νββ0\nu\beta\beta). The primary objective of the G-NUMEN array is to detect the gamma rays emitted from the deexcitation of the excited states populated via DCE reactions with good energy resolution and detection efficiency, amidst a background composed of transitions from competing reaction channels with far higher cross sections. To achieve this, the G-NUMEN signals will be processed in coincidence with those generated by the detection of the reaction ejectiles in the MAGNEX Focal Plane Detector(FPD). Under the expected experimental conditions, G-NUMEN detectors will operate at high counting rates, of the order of hundreds of kHz per detector, while maintaining excellent energy and timing resolutions. The complete array will consist of over 100 LaBr3_3(Ce) scintillators. Initial tests have been conducted on the first detectors of the array, allowing for the determination of their performance at high rates

    Response of G-NUMEN LaBr3_3(Ce) detectors to high counting rates

    No full text
    International audienceThe G-NUMEN array is the future gamma spectrometer of the NUMEN experiment (Nuclear Matrix Element for the Neutrinoless double beta decay), to be installed around the object point of the MAGNEX magnetic spectrometer at the INFN-LNS laboratory. This project aims at exploring Double Charge Exchange (DCE) reactions in order to obtain crucial information about the neutrinoless double beta decay (0νββ0\nu\beta\beta). The primary objective of the G-NUMEN array is to detect the gamma rays emitted from the deexcitation of the excited states populated via DCE reactions with good energy resolution and detection efficiency, amidst a background composed of transitions from competing reaction channels with far higher cross sections. To achieve this, the G-NUMEN signals will be processed in coincidence with those generated by the detection of the reaction ejectiles in the MAGNEX Focal Plane Detector(FPD). Under the expected experimental conditions, G-NUMEN detectors will operate at high counting rates, of the order of hundreds of kHz per detector, while maintaining excellent energy and timing resolutions. The complete array will consist of over 100 LaBr3_3(Ce) scintillators. Initial tests have been conducted on the first detectors of the array, allowing for the determination of their performance at high rates

    The NUMEN Project: An Update of the Facility Toward the Future Experimental Campaigns

    No full text
    International audienceThe goal of NUMEN project is to access experimentally driven information on Nuclear Matrix Elements (NME) involved in the neutrinoless double beta decay (0νββ) by accurate measurements of the cross sections of heavy-ion induced double charge-exchange reactions. In particular, the (18O, 18Ne) and (20Ne, 20O) reactions are adopted as tools for β+β+ and β-β- decays, respectively. The experiments are performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania using the Superconducting Cyclotron to accelerate the beams and the MAGNEX magnetic spectrometer to detect the reaction products. The measured cross sections are very low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. In order to make feasible a systematic study of all the candidate nuclei, a major upgrade of the LNS facility is foreseen to increase the experimental yield by more than two orders of magnitude. To this purpose, frontier technologies are being developed for both the accelerator and the detection systems. An update description of the NUMEN project is presented here, focusing on recent achievements from the R&D activity

    The NUMEN Heavy Ion Multidetector for a Complementary Approach to the Neutrinoless Double Beta Decay

    No full text
    International audienceNeutrinos are so far the most elusive known particles, and in the last decades many sophisticated experiments have been set up in order to clarify several questions about their intrinsic nature, in particular their masses, mass hierarchy, intrinsic nature of Majorana or Dirac particles. Evidence of the Neutrinoless Double-Beta Decay (NDBD) would prove that neutrinos are Majorana particles, thus improving the understanding of the universe itself. Besides the search for several large underground experiments for the direct experimental detection of NDBD, the NUMEN experiment proposes the investigation of a nuclear mechanism strongly linked to this decay: the Double Charge Exchange reactions (DCE). As such reactions share with the NDBD the same initial and final nuclear states, they could shed light on the determination of the Nuclear Matrix Elements (NMEs), which play a relevant role in the decay. The physics of DCE is described elsewhere in this issue, while the focus of this paper will be on the challenging experimental apparatus currently under construction in order to fulfil the requirements of the NUMEN experiment. The overall structure of the technological improvement to the cyclotron, along with the newly developed detection systems required for tracking and identifying the reaction products and their final excitation level are described

    The NUMEN Technical Design Report

    No full text
    International audienceNUMEN proposes an innovative technique to access the nuclear matrix elements entering the expression of the lifetime of the double beta decay by cross-section measurements of heavy-ion induced Double Charge Exchange (DCE) reactions. Despite the fact that the two processes, namely neutrinoless double beta decay and DCE reactions, are triggered by the weak and strong interaction respectively, important analogies are suggested. The basic point is the coincidence of the initial and final state many-body wave functions in the two types of processes and the formal similarity of the transition operators. The main experimental tools for this project are the K800 Superconducting Cyclotron and MAGNEX spectrometer at the INFN-LNS laboratory. However, the tiny values of DCE cross-sections and the resolution requirements demand beam intensities much higher than those manageable with the present facility. The on-going upgrade of the INFN-LNS facilities promoted by the POTLNSa project in this perspective is intimately connected to the NUMEN project. This paper describes the solutions proposed as a result of the R&D activity performed during the recent years. The goal is to develop suitable technologies allowing for the measurements of DCE cross-section under extremely high beam intensities. PIR01_00005 — potenziamento dell’infrastruttura di ricerca Laboratori Nazionali del Sud per la produzione di fasci di ioni ad alta intensitá
    corecore