2 research outputs found

    Propagating Relationship of Cerebral Oximetric Volume and the Clinical Outcome of Recombinant Tissue Plasminogen Activator (r-TPA) Therapy on Acute Cerebral Ischemic Stroke Patients

    Get PDF
    Introduction: Currently, the most available treatment for acute ischemic stroke (AIS) is thrombolytic therapy with recombinant tissue plasminogen activator (r-TPA). A challenge in r-TPA therapy is the prediction of recovery in each case. Objective: The aim was to find a possible relationship between the cerebral oximetry indexes and the clinical outcome of r-TPA therapy to assess the cerebral oximetry as a non-invasive monitoring agent for therapy. Methods: The inclusion criteria were all patients with AIS who received r-TPA. The neurologic status was evaluated based on the national institutes of health stroke scale (NIHSS) score at arrival, and after a period of 24 hours. In addition, the levels of brain oxygenation in both hemispheres were measured before and continuously over the first 24 hours after r-TPA injection, using an oximetric sensor in the frontal lobes. The clinical success was defined as a 4-point improvement from the baseline NIHSS. Results: Total 44 patients with the mean age of 58.2 ± 2.18 years were enrolled, of whom 68.18% were male. Twenty-eight patients remained clinically unimproved and 16 patients were improved. A significant difference was found in the mean surface area under the brain oximetric curve in the 24 hour, in the affected hemisphere in the improved group, compared to the unimproved group (P = 0.007). There was a significant difference between the mean increase in brain oxygenation within 24 hours in the improved and unimproved groups (P = 0.002). Conclusion: The cerebral oximetry could contribute to predict the likelihood of r-TPA prognosis in patients with AIS

    Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study

    No full text
    Purpose In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes
    corecore