9 research outputs found

    Non-blackbody disks can help explain inferred AGN accretion disk sizes

    Get PDF
    If the atmospheric density ρatm in the accretion disk of an active galactic nucleus (AGN) is sufficiently low, scattering in the atmosphere can produce a non-blackbody emergent spectrum. For a given bolometric luminosity, at ultraviolet and optical wavelengths such disks have lower fluxes and apparently larger sizes as compared to disks that emit as blackbodies. We show that models in which ρatm is a sufficiently low fixed fraction of the interior density ρ can match the AGN STORM observations of NGC 5548 but produce disk spectral energy distributions that peak at shorter wavelengths than observed in luminous AGN in general. Thus, scattering atmospheres can contribute to the explanation for large inferred AGN accretion disk sizes but are unlikely to be the only contributor. In the appendix section, we present unified equations for the interior ρ and T in gas pressure-dominated regions of a thin accretion disk.PostprintPeer reviewe

    A First Look at Spatially Resolved Balmer Decrements at 1.0<z<2.41.0<z<2.4 from JWST NIRISS Slitless Spectroscopy

    Full text link
    We present the first results on the spatial distribution of dust attenuation at 1.0<z<2.41.0<z<2.4 traced by the Balmer Decrement, Hα\alpha/Hβ\beta, in emission-line galaxies using deep JWST NIRISS slitless spectroscopy from the CAnadian NIRISS Unbiased Cluster Survey (CANUCS). Hα\alpha and Hβ\beta emission line maps of emission-line galaxies are extracted and stacked in bins of stellar mass for two grism redshift bins, 1.0<zgrism<1.71.0<z_{grism}<1.7 and 1.7<zgrism<2.41.7<z_{grism}<2.4. Surface brightness profiles for the Balmer Decrement are measured and radial profiles of the dust attenuation towards Hα\alpha, AHαA_{\mathrm{H}\alpha}, are derived. In both redshift bins, the integrated Balmer Decrement increases with stellar mass. Lower mass (7.67.6\leqslantLog(MM_{*}/M_{\odot})<10.0<10.0) galaxies have centrally concentrated, negative dust attenuation profiles whereas higher mass galaxies (10.010.0\leqslantLog(MM_{*}/M_{\odot})<11.1<11.1) have flat dust attenuation profiles. The total dust obscuration is mild, with on average 0.07±0.070.07\pm0.07 and 0.14±0.070.14\pm0.07 mag in the low and high redshift bins respectively. We model the typical light profiles of star-forming galaxies at these redshifts and stellar masses with GALFIT and apply both uniform and radially varying dust attenuation corrections based on our integrated Balmer Decrements and radial dust attenuation profiles. If these galaxies were observed with typical JWST NIRSpec slit spectroscopy (0.2×0.50.2\times0.5^{\prime\prime} shutters), on average, Hα\alpha star formation rates (SFRs) measured after slit-loss corrections assuming uniform dust attenuation will overestimate the total SFR by 6±21%6\pm21 \% and 26±9%26\pm9 \% at 1.0z<1.71.0\leqslant z < 1.7 and 1.7z<2.41.7\leqslant z < 2.4 respectively.Comment: 7 pages, 5 figures, submitted to ApJ

    Λ\LambdaCDM not dead yet: massive high-z Balmer break galaxies are less common than previously reported

    Full text link
    Early JWST observations that targeted so-called double-break sources (attributed to Lyman and Balmer breaks at z>7z>7), reported a previously unknown population of very massive, evolved high-redshift galaxies. This surprising discovery led to a flurry of attempts to explain these objects' unexpected existence including invoking alternatives to the standard Λ\LambdaCDM cosmological paradigm. To test these early results, we adopted the same double-break candidate galaxy selection criteria to search for such objects in the JWST images of the CAnadian NIRISS Unbiased Cluster Survey (CANUCS), and found a sample of 19 sources over five independent CANUCS fields that cover a total effective area of 60\sim60\,arcmin2^2 at z8z\sim8. However, (1) our SED fits do not yield exceptionally high stellar masses for our candidates, while (2) spectroscopy of five of the candidates shows that while all five are at high redshifts, their red colours are due to high-EW emission lines in star-forming galaxies rather than Balmer breaks in massive, evolved systems. Additionally, (3) field-to-field variance leads to differences of 1.5\sim 1.5 dex in the maximum stellar masses measured in the different fields, suggesting that the early single-field JWST observations may have suffered from cosmic variance and/or sample bias. Finally, (4) we show that the presence of even a single massive outlier can dominate conclusions from small samples such as those in early JWST observations. In conclusion, we find that the double-break sources in CANUCS are not sufficiently massive or numerous to warrant questioning the standard Λ\LambdaCDM paradigm.Comment: V2: correction of display problem of Fig.1 in Chrome browser. Submitted to MNRAS, 10 pages (+4 in Appendix), 5 figures (+4), 1 table (+1

    The Sparkler: Evolved High-Redshift Globular Clusters Captured by JWST

    Full text link
    Using data from JWST, we analyze the compact sources ("sparkles") located around a remarkable zspec=1.378z_{\rm spec}=1.378 galaxy (the "Sparkler") that is strongly gravitationally lensed by the z=0.39z=0.39 galaxy cluster SMACS J0723.3-7327. Several of these compact sources can be cross-identified in multiple images, making it clear that they are associated with the host galaxy. Combining data from JWST's {\em Near-Infrared Camera} (NIRCam) with archival data from the {\em Hubble Space Telescope} (HST), we perform 0.4-4.4μ\mum photometry on these objects, finding several of them to be very red and consistent with the colors of quenched, old stellar systems. Morphological fits confirm that these red sources are spatially unresolved even in strongly magnified JWST/NIRCam images, while JWST/NIRISS spectra show [OIII]5007 emission in the body of the Sparkler but no indication of star formation in the red compact sparkles. The most natural interpretation of these compact red companions to the Sparkler is that they are evolved globular clusters seen at z=1.378z=1.378. Applying \textsc{Dense Basis} SED-fitting to the sample, we infer formation redshifts of zform711z_{form} \sim 7-11 for these globular cluster candidates, corresponding to ages of 3.94.1\sim 3.9-4.1 Gyr at the epoch of observation and a formation time just \sim0.5~Gyr after the Big Bang. If confirmed with additional spectroscopy, these red, compact "sparkles" represent the first evolved globular clusters found at high redshift, could be amongst the earliest observed objects to have quenched their star formation in the Universe, and may open a new window into understanding globular cluster formation. Data and code to reproduce our results will be made available at \faGithub\href{https://niriss.github.io/sparkler.html}{http://canucs-jwst.com/sparkler.html}.Comment: Submitted to ApJL. Comments are welcome. Data and code to reproduce our results will be made available at niriss.github.io/sparkler.htm

    The first large catalogue of spectroscopic redshifts in Webb's First Deep Field, SMACS J0723.3-7327

    Full text link
    We present a spectroscopic redshift catalogue of the SMACS J0723.3-7327 field ("Webb's First Deep Field") obtained from JWST/NIRISS grism spectroscopy and supplemented with JWST/NIRSpec and VLT/MUSE redshifts. The catalogue contains a total of 190 sources with secure spectroscopic redshifts, including 156 NIRISS grism redshifts, 123 of which are for sources whose redshifts were previously unknown. These new grism redshifts are secured with two or more spectroscopic features (64 sources), or with a single spectral feature whose identity is secured from the object's nine-band photometric redshift (59 sources). These are complemented with 17 NIRSpec and 48 MUSE redshifts, including six new NIRSpec redshifts identified in this work. In addition to the zcl=0.39z_{\rm cl}=0.39 cluster galaxy redshifts (for which we provide \sim40 new NIRISS absorption-line redshifts), we also find three prominent galaxy overdensities at higher redshifts - at z=1.1z=1.1, z=1.4z=1.4, and z=2.0z=2.0 - that were until now not seen in the JWST/NIRSpec and VLT/MUSE data. The paper describes the characteristics of our spectroscopic redshift sample and the methodology we have employed to obtain it. Our redshift catalogue is made available to the community at https://niriss.github.io/smacs0723.Comment: 19 pages, 13 figures, 3 appendices. Accepted for publication in MNRA

    Star Formation at the Epoch of Reionization with CANUCS: The Ages of Stellar Populations in MACS1149-JD1

    No full text
    We present measurements of stellar populations properties of a z = 9.1 gravitationally lensed galaxy MACS1149-JD1 using deep James Webb Space Telescope NIRISS slitless spectroscopy as well as NIRISS and NIRCam imaging from the CAnadian NIRISS Unbiased Cluster Survey (CANUCS). The galaxy is split into four components. Three magnified ( μ ∼ 11) star-forming components are unresolved, giving intrinsic sizes of <25 pc. In addition, the underlying extended component contains the bulk of the stellar mass, formed the majority of its stars ∼50 Myr earlier than the other three components, and is not the site of the most active star formation currently. The NIRISS and NIRCam resolved photometry does not confirm a strong Balmer break previously seen in Spitzer. The NIRISS grism spectrum has been extracted for the entire galaxy and shows a clear continuum and Lyman break, with no Ly α detected

    A First Look at Spatially Resolved Balmer Decrements at 1.0 < z < 2.4 from JWST NIRISS Slitless Spectroscopy

    No full text
    We present the first results on the spatial distribution of dust attenuation at 1.0 < z < 2.4 traced by the Balmer decrement, H α /H β , in emission-line galaxies using deep JWST NIRISS slitless spectroscopy from the CAnadian NIRISS Unbiased Cluster Survey (CANUCS). H α  and H β  emission-line maps of emission-line galaxies are extracted and stacked in bins of stellar mass for two grism redshift bins, 1.0 < z _grism < 1.7 and 1.7 < z _grism < 2.4. Surface brightness profiles for the Balmer decrement are measured and radial profiles of the dust attenuation toward  H α , A _H _α , are derived. In both redshift bins, the integrated Balmer decrement increases with stellar mass. Lower-mass (7.6 ≤ Log( M _* / M _⊙ ) < 10.0) galaxies have centrally concentrated, negative dust attenuation profiles whereas higher-mass galaxies (10.0 ≤ Log( M _* / M _⊙ ) < 11.1) have flat dust attenuation profiles. The total dust obscuration is mild, with on average 0.07 ± 0.07 and 0.14 ± 0.07 mag in the low- and high-redshift bins respectively. We model the typical light profiles of star-forming galaxies at these redshifts and stellar masses with GALFIT and apply both uniform and radially varying dust attenuation corrections based on our integrated Balmer decrements and radial dust attenuation profiles. If the H α  star formation rates (SFRs) of these galaxies were measured after slit-loss corrections assuming uniform dust attenuation with typical JWST NIRSpec slit spectroscopy (0.″2 × 0.″5 shutters), the total SFR will be overestimated by 6% ± 21% and 26% ± 9% at 1.0 ≤ z < 1.7 and 1.7 ≤ z < 2.4 respectively
    corecore