952 research outputs found
Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations
International audienceSolar energetic particle fluxes (Ee > 38 keV) observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF) embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs) detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A) the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B) during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude
First year student expectations: Results from a university-wide student survey
Although much has been written on the first-year experience of students at higher education institutions, less attention has been directed to the expectations of students when they enter an institution for the first time. This paper provides additional insights into the expectations of students at an Australian university and highlights areas in which students’ expectations may not necessarily align with the realities of common university practices. By providing opportunities for students to articulate their expectations, staff are able to use the responses for a constructive dialogue and work towards a more positive alignment between perceived expectations and levels of student satisfaction with their experience.Geoffrey Crisp, Edward Palmer, Deborah Turnbull, Ted Nettelbeck, Lynn Ward, Amanda LeCouteur, Aspa Sarris, Peter Strelan, and Luke Schneide
Attenuation of Rayleigh waves due to three-dimensional surface roughness: a comprehensive numerical evaluation
The phenomenon of Rayleigh wave attenuation due to surface roughness has been well studied theoretically in the literature. Three scattering regimes describing it have been identified-the Rayleigh (long wavelength), stochastic (medium wavelength), and geometric (short wavelength)-with the attenuation coefficient exhibiting a different behavior in each. Here, in an extension to our previous work, we gain further insight with regard to the existing theory, in three dimensions, using finite element (FE) modeling, under a unified approach, where the same FE modeling techniques are used regardless of the scattering regime. We demonstrate good agreement between our FE results and the theory in all scattering regimes. Additionally, following this demonstration, we extend the results to cases that lie outside the limits of validity of the theory
Computational Study of the Optimum Gradient Magnetic Field for the Navigation of the Spherical Particles in the Process of Cleaning the Water from Heavy Metals
AbstractThe usage of magnetic spherical nanoparticles, coated with substances and driven to targeted areas in tanks, is proposed for cleaning the water from heavy metals. In the present paper, a computational study for the estimation of the optimum gradient magnetic field is presented in order to ensure the optimum driving of the particles into the targeted area. The optimization of the gradient magnetic field rates’ is verified with the particles’ deviation from a desired trajectory. Using the above mentioned method, it was depicted that with the increase of the optimization parameters number, the particles’ deviation from the desired trajectory is decreased
Three dimensional facial model adaptation
This paper addresses the problem of adapting a generic 3D face model to a human face of which the frontal and profile views are given. Assuming that a set of feature points have been detected on both views the adaptation procedure initializes with a rigid transformation of the model aiming to minimize the distances of the 3D model feature nodes from the calculated 3D coordinates of the 2D feature points. Then, a non-rigid transformation ensures that the feature nodes are displaced optimally close to their exact calculated positions, dragging their neighbors in a way that does not deform the facial model in an unnatural way
Geometrical characteristics of magnetospheric energetic ion time series: evidence for low dimensional chaos
International audienceIn the first part of the paper we study the geometrical characteristics of the magnetospheric ions' time series in the reconstructed phase space by using the SVD extended chaotic analysis, and we test the strong null hypothesis supposing that the ions' time series is caused by a linear stochastic process perturbed by a static nonlinear distortion. The SVD reconstructed spectrum of the ions' signal reveals a strong component of high dimensional, external coloured noise, as well as an internal low dimensional nonlinear deterministic component. Also, the stochastic Lorenz system produced by coloured noise perturbation of the deterministic Lorenz system was used as an archetype model in comparison with the dynamics of the magnetrospheric ions
Observations of flux rope ? associated particle bursts with GEOTAIL in the distant tail
International audienceGeotail energetic particle, magnetic field data and plasma observations (EPIC, MGF and CPI experiments) have been examined for a number of energetic particle bursts in the distant tail (120ReGSM|By and/or Bz components, is consistent with the existence of closed field lines extending from Earth and wrapping around the core of the flux rope structure
- …