35 research outputs found

    Post-transcriptional regulation of IGF1R by key microRNAs in long-lived mutant mice

    Get PDF
    Long-lived mutant mice, both Ames dwarf and growth hormone receptor genedisrupted or knockout strains, exhibit heightened cognitive robustness and altered IGF1 signaling in the brain. Here, we report, in both these long-lived mice, that three up-regulated lead microRNAs, miR-470, miR-669b, and miR-681, are involved in posttranscriptional regulation of genes pertinent to growth hormone/IGF1 signaling. All three are most prominently localized in the hippocampus and correspond to reduced expression of key IGF1 signaling genes: IGF1, IGF1R, and PI3 kinase. The decline in these genes expression translates into decreased phosphorylation of downstream molecules AKT and FoxO3a. Cultures transfected with either miR-470, miR-669b, or miR-681 show repressed endogenous expression of all three genes of the IGF1 signaling axis, most significantly IGF1R, while other similarly up-regulated microRNAs, including let-7g and miR-509, do not induce the same levels of repression. Transduction study in IGF1-responsive cell cultures shows significantly reduced IGF1R expression, and AKT to some extent, most notably by miR-681. This is accompanied by decreased levels of downstream phosphorylated forms of AKT and FoxO3a upon IGF1 stimulation. Suppression of IGF1R by the three microRNAs is further validated by IGF1R 3\u27UTR reporter assays. Taken together, our results suggest that miR-470, miR-669b, and miR-681 are all functionally able to suppress IGF1R and AKT, two upstream genes controlling FoxO3a phosphorylation status. Their up-regulation in growth hormone signaling-deficient mutant mouse brain suggests reduced IGF1 signaling at the posttranscriptional level, for numerous gains of neuronal function in these long-lived mice

    Long Non-Coding RNA ZFAS1 Is a Major Regulator of Epithelial-Mesenchymal Transition through miR-200/ZEB1/E-Cadherin, Vimentin Signaling in Colon Adenocarcinoma

    Get PDF
    Colon adenocarcinoma is a common cause of cancer-related deaths worldwide. Epithelial-mesenchymal transition is a major regulator of cancer metastasis, and increased understanding of this process is essential to improve patient outcomes. Long non-coding RNA (lncRNA) are important regulators of carcinogenesis. To identify lncRNAs associated with colon carcinogenesis, we performed an exploratory differential gene expression analysis comparing paired colon adenocarcinoma and normal colon epithelium using an RNA-sequencing data set. This analysis identified lncRNA ZFAS1 as significantly increased in colon cancer compared to normal colon epithelium. This finding was validated in an institutional cohort using laser capture microdissection. ZFAS1 was also found to be principally located in the cellular cytoplasm. ZFAS1 knockdown was associated with decreased cellular proliferation, migration, and invasion in two colon cancer cell lines (HT29 and SW480). MicroRNA-200b and microRNA-200c (miR-200b and miR-200c) are experimentally validated targets of ZFAS1, and this interaction was confirmed using reciprocal gene knockdown. ZFAS1 knockdown regulated ZEB1 gene expression and downstream targets E-cadherin and vimentin. Knockdown of miR-200b or miR-200c reversed the effect of ZFAS1 knockdown in the ZEB1/E-cadherin, vimentin signaling cascade, and the effects of cellular migration and invasion, but not cellular proliferation. ZFAS1 knockdown was also associated with decreased tumor growth in an in vivo mouse model. These results demonstrate the critical importance of ZFAS1 as a regulator of the miR-200/ZEB1/E-cadherin, vimentin signaling cascade

    The microRNA‑200 family acts as an oncogene in colorectal cancer by inhibiting the tumor suppressor RASSF2

    Get PDF
    This study aimed to determine whether manipulation of the microRNA‑200 (miR‑200) family could influence colon adenocarcinoma cell behavior. The miR‑200 family has a significant role in tumor suppression and functions as an oncogene. In vitro studies on gain and loss of function with small interfering RNA demonstrated that the miR‑200 family could regulate RASSF2 expression. Knockdown of the miR‑200 family in the HT‑29 colon cancer cell line increased KRAS expression but decreased signaling in the MAPK/ERK signaling pathway through reduced ERK phosphorylation. Increased expression of the miR‑200 family in the CCD‑841 colon epithelium cell line increased KRAS expression and led to increased signaling in the MAPK/ERK signaling pathway but increased ERK phosphorylation. Functionally, knockdown of the miR‑200 family led to decreased cell proliferation in the HT‑29 cells; therefore, increased miR‑200 family expression could increase cell proliferation in the CCD‑841 cell line. The present study included a large paired miR array dataset (n=632), in which the miR‑200 family was significantly found to be increased in colon cancer when compared with normal adjacent colon epithelium. In a miR‑seq dataset (n=199), the study found that miR‑200 family expression was increased in localized colon cancer compared with metastatic disease. Decreased expression was associated with poorer overall survival. The miR‑200 family directly targeted RASSF2 and was inversely correlated with RASSF2 expression (n=199, all P<0.001). Despite the well‑defined role of the miR‑200 family in tumor suppression, the present findings demonstrated a novel function of the miR‑200 family in tumor proliferation

    The role and function of IκKα/β in monocyte impairment

    Get PDF
    Following major trauma, sepsis or surgery, some patients exhibit an impaired monocyte inflammatory response that is characterized by a decreased response to a subsequent bacterial challenge. To investigate this poorly understood phenomenon, we adopted an in-vitro model of endotoxin tolerance utilising primary human CD14 + monocytes to focus on the effect of impairment on IκKα/β, a critical part of the NFκB pathway. Impaired monocytes had decreased IκKα mRNA and protein expression and decreased phosphorylation of the IκKα/β complex. The impaired monocyte secretome demonstrated a distinct cytokine/chemokine footprint from the naïve monocyte, and that TNF-α was the most sensitive cytokine or chemokine in this setting of impairment. Inhibition of IκKα/β with a novel selective inhibitor reproduced the impaired monocyte phenotype with decreased production of TNF-α, IL-6, IL-12p70, IL-10, GM-CSF, VEGF, MIP-1β, TNF-β, IFN-α2 and IL-7 in response to an LPS challenge. Surgical patients with infection also exhibited an impaired monocyte phenotype and had decreased SITPEC, TAK1 and MEKK gene expression, which are important for IκKα/β activation. Our results emphasize that impaired monocyte function is, at least in part, related to dysregulated IκKα/β activation, and that IκKα/β is likely involved in mounting a sufficient monocyte inflammatory response. Future studies may wish to focus on adjuvant therapies that augment IκKα/β function to restore monocyte function in this clinically important problem

    Comparison of cell survival in culture.

    No full text
    <p>The addition of ATP-vesicles (1 mM Mg-ATP) into the culture medium increases monocyte-macrophage survival time 3–4 folds compared to the culture medium alone, Regranex (0.001%), or LPS (100 ng).</p

    Comparison of direct collagen fiber counts 3 days after surgery.

    No full text
    <p>Wounds treated with ATP-vesicles show 4–5 times higher collagen content than those treated with Regranex.</p

    Comparison of macrophage numbers in the early days of the healing process.

    No full text
    <p>Regranex-treated wounds show a slight increase in macrophage numbers. However, when ATP-vesicles are used, macrophage numbers are 7–8 times higher than in the Regranex-treated wounds at day 1, but decrease quickly thereafter.</p

    Dose-dependent collagen production by macrophages.

    No full text
    <p>Macrophage collagen production appears to be dose-dependent when ATP-vesicles are used. The higher the ATP concentration, the more collagen 1α1 is produced.</p
    corecore