2 research outputs found

    Deep Learning Implementation of Model Predictive Control for Multi-Output Resonant Converters

    Get PDF
    Flexible-surface induction cooktops rely on multi-coil structures which are powered by means of advanced resonant power converters that achieve high versatility while maintaining high efficiency and power density. The study of multi-output converters has led to cost-effective and reliable implementations even if they present complex control challenges to provide high performance. For this scenario, model predictive control arises as a modern control technique that is capable of handling multivariable problems while dealing with nonlinearities and constraints. However, these controllers are based on the computationally-demanding solution of an optimization problem, which is a challenge for high-frequency real-time implementations. In this context, deep learning presents a potent solution to approximate the optimal control policy while achieving a time-efficient evaluation, which permits an online implementation. This paper proposes and evaluates a multi-output-resonant-inverter model predictive controller and its implementation on an embedded system by means of a deep neural network. The proposal is experimentally validated by a resonant converter applied to domestic induction heating featuring a two-coil 3.6 kW architecture controlled by means of a FPGA. Autho

    Mains-Synchronized Pulse Density Modulation Strategy Applied to a ZVS Resonant Matrix Inverter

    Get PDF
    Multi-output inverters have become a key enabling technology to increase surface flexibility in domestic induction heating appliances. The most commonly used power converter topologies are based on electromechanical relays in order to multiplex the connected loads and obtain a proper heat distribution. This solution, which is used in combination with other modulations such as square waveform, relies on the thermal inertia of the pot as it needs long power-averaging periods to reduce the reiteration of the switching noise. However, it presents a significant limitation in terms of acoustic noise, reliability, and thermal performance. To overcome these limitations, complete solid-state inverters that can be operated at higher frequencies are proposed. This change in the design paradigm of the pulse density modulation strategies leads to improved thermal control in the pot and better user experience, but at the same time increases challenges due to design constraints imposed by electromagnetic compatibility regulations. This article analyzes the possibilities of a new mains-synchronized pulse density modulation applied to a flexible induction cooktop that uses a multiple-output ZVS resonant inverter topology. The feasibility of the control strategies has been tested by means of a prototype featuring 12 2-kW induction heating loads. © 1982-2012 IEEE
    corecore