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ABSTRACT Flexible-surface induction cooktops rely on multi-coil structures which are powered by means
of advanced resonant power converters that achieve high versatility while maintaining high efficiency and
power density. The study of multi-output converters has led to cost-effective and reliable implementations
even if they present complex control challenges to provide high performance. For this scenario, model pre-
dictive control arises as a modern control technique that is capable of handling multivariable problems while
dealing with nonlinearities and constraints. However, these controllers are based on the computationally-
demanding solution of an optimization problem, which is a challenge for high-frequency real-time imple-
mentations. In this context, deep learning presents a potent solution to approximate the optimal control
policy while achieving a time-efficient evaluation, which permits an online implementation. This paper
proposes and evaluates a multi-output-resonant-inverter model predictive controller and its implementation
on an embedded system by means of a deep neural network. The proposal is experimentally validated by a
resonant converter applied to domestic induction heating featuring a two-coil 3.6 kW architecture controlled
by means of a FPGA.

INDEX TERMS Home appliances, induction heating, model predictive control, multi-output inverter, neural

network, power control.

I. INTRODUCTION
Flexible surface induction heating appliances combine the
main induction heating advantages, such as high efficiency,
fast heating and safe and clean operation, with the pot detec-
tion capabilities in order to boost user experience [1]-[3].
The increased flexibility is achieved by multi-coil struc-
tures as the ones depicted in Figure 1. In order to power these
structures, several alternatives of resonant power converters
have been proposed in the literature. The alternatives include
classical single-inverter single-coil implementations [4], [5],
load multiplexation approaches [6], and a heterogeneous
group of multi-output inverters [7]-[11].
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All of these topologies provide versatile and reliable solu-
tions that require complex modulation strategies in order to
achieve proper and precise power management [12], [13].
In order to do so, an increasing number of control parameters
is required and several constraints arise, leading to limited
application of classical control techniques. In this context,
model predictive control (MPC) appears as an effective tool
to control multi-in multi-out complex systems [14], with a
high applicability in the field of power electronics [15]-[18].

MPC uses a model of the system in order to predict its
behavior and is therefore able to compute a sequence of con-
trol inputs by solving an optimization problem that optimizes
a desired performance.

The online solution of the optimization problem presents
limitations when applied to high frequency power electronics,
leading to solutions that require strong simplifications [17].
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FIGURE 1. Flexible induction heating alternative layouts. Size flexibility
(a), vertical flexibility (b), and complete flexibility (c).

However, at its core, the MPC problem can be seen as an
implicit function, mapping the current state to an optimal
control input. Therefore, with the widespread development
of deep learning, approaches that solve rigorous nonlinear
MPC and implement it by means of a deep neural network
(DNN) have been proposed in the literature [19]-[21], being
applicable to resonant converters [22], [23].

This work proposes the formulation of a general nonlinear
MPC for a multi-output resonant inverter, whose control
law is then implemented in a DNN. The MPC is designed
to solve a multi-load power-tracking control while dealing
with shared power devices, and therefore common control
parameters. Additionally, the optimization problem includes
non-linear constraints to ensure the converter high efficiency
and safe operation, e.g. zero voltage switch commutation. The
DNN is designed such that a low approximation error of the
NMPC is achieved while being implementable in a FPGA and
solved in in real time, within the same switching cycle, at
30 kHz. The proposed approach is implemented and verified
experimentally on a 3.6 kW multi-output inverter.

The remainder of this paper is organized as fol-
lows. Section II presents the multi-output converter and
Sections IIT and IV cover the MPC design and DNN learning,
respectively. Section V shows the experimental results and
Section VI concludes this article.

IIl. MULTI-OUTPUT RESONANT INVERTER

In order to achieve cost-effective implementations, reduced
idle power devices, and decrease mean time between fail-
ures, multi-output inverters have been proposed to power
flexible surface cooktops. These implementations are derived
from different single output classical converters, such as
the half-bridge [11], [24], full bridge [25] or single switch
topologies [26], [27].

A recurrent approach consists on reducing the number of
power devices by sharing some of them among the differ-
ent loads [27]-[29]. As a consequence, classical modulation
strategies are limited in the power control, requiring the
inclusion of independent parameters that correspond with the
independent power devices [12], [13], [30].
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FIGURE 2. Single-column multi-output ZVS matrix resonant converter (a),
and the proposed modulation parameters and waveforms (b).

A. MATRIX CONVERTER WITH NC-PDC MODULATION

The inverter considered in this paper is derived from the
matrix zero-voltage-switching (ZVS) inverter presented in
[31]. Its structure is depicted in II (a), and presents a common
high-side transistor, Sy, and an independent output cell for
each resonant tank. These cells are composed by a low-
side transistor, Sr j, with antiparallel diode, Dy ;, a high-
side antiparallel diode, Dy ;, and a series diode, Ds ;. Each
resonant tank comprises the IH-load equivalent resistance,
Req,i, and inductance, L, ;, and a resonant capacitor, C ;.

The operation of the inverter ensures that the same voltage
is applied to all resonant tanks during Sy active time while,
once Sy is turned off, the series diode allows independent
behavior of the different IH loads. The presence of the series
diode sets St ; as the only path to discharge C,; below the
bus voltage, V.., allowing to control the transmitted power
or even disconnect the IH load by modulating Sy ; active
time.

Based on that operation principle, several modulation
strategies have been proposed on the literature [32]. In this
paper, non-complementary pulse delay control (NC-PDC)
modulation is selected. On it, switching frequency, f;,,, and
duty cycle, D, are set common to all branches by means of the
activation of the high-side transistor, and «; parameter, which
corresponds with Sy ; activation delay, allows to achieve inde-
pendent power control for the different loads (Figure 2(b)).
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FIGURE 3. Optimization interval division of a switching cycle.

IIl. MPC FOR RESONANT MULTI-OUTPUT INVERTER
Model predictive control is of great applicability on resonant
inverters as it can deal with nonlinear systems and includes
constraints both on inputs and states. Besides, MPC offers
high performance when dealing with a high number of states
and inputs.

Standard MPC implementations calculate a series of opti-
mal control inputs (ug, ..., uny—1) of the system within a
prediction horizon, N, based on the solving of an optimiza-
tion problem that minimizes a certain cost function, J. This
problem, which is solved at each control instance when new
states data is available, can be formulated as

N—1
mmlldimze Z J (xk, ug)
k=0
subject to xxy1 =f (xk, ug), X0 = X,
g (xp,up) <0,
fork=0,....,.N —1. (1)

where x; and u; are the states and the control inputs of the
system at step k, respectively. Function f(xg,u;) denotes a
discrete-time model of the system and g are general con-
straints to be satisfied during operation. The current state of
the system is x, which needs to be measured or estimated.

A. MODEL OF SINGLE oUTPUT

Each branch presents its own resonant tank. Thus, the dynam-
ics of the i TH load can be expressed by means of the
differential equations of two states, i; ; and v, ;:

dij 1 .
d_l:l - Lé’q’i (VU’i - Req,ilo,i - Vc,i) ’
dve i 1
i 2
dt C, 7t .

being the voltage applied to the load, v, ;, a signal that
changes between 0 V and V.. during the switching period
depending on the control parameters, resulting on a switch-
ing system. In the case of the proposed converter, f,, and
D appear as common control parameters for all branches,
as they share high-side transistor activation, and «; is the
control parameter that ensures independent power control.
In [23] a double time transformation is proposed to over-
come the challenge of efficiently solving an optimization
problem that includes such switching systems when v, ; is
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FIGURE 4. Sigmoid steepness and state behavior.

known in advance. However, as a consequence of using a non-
complementary modulation, while no transistor is active, v, ;,
depends on the current path as follows:

Vee ifi; <0
Vo,i = o 3)
0 ifi;; > 0.
Therefore, a time transformation is performed to divide
each switching cycle into three optimization intervals, which
are depicted in Figure 3:

D,
I k
x;EJ]rl = — W G, i)

fsw,k
(1] (1 = Dy) ik
X = ———— " (O, we)
k+1 fsw,k
I (I —=Dp) (1 —ajx
X = U=t oy, @)
fsw,k

where £ and £ refer to the model defined in (2) with the
signal v, ; set to V.. and 0 V respectively. f !l also denotes the
model defined in (2) but in this case, the signal v, ; is defined
by its dependence on the current.

This voltage change has been modelled in the literature by
a sigmoid function in order to achieve continuity [33]. v, ;
in 1 is approximated by a logistic function with a certain
slope, A, which is adjusted by the time transformation:

1

1 — D)o .
1+e_A<( k) l’k/fsw,k)ll’i

The sigmoid slope is critical for the efficient solving of
the optimization problem as steep approximations present big
changes for small optimizer steps. In Figure 4 the main wave-
forms of the converter, obtained using the differential equa-
tions of the three intervals and different slopes, are compared
with a spice simulation, which shows a good agreement with
the real behavior. Due to its direct dependency with v, ;, the

&)

Vo,i =

VOLUME 10, 2022



P. Guillén et al.: Deep Learning Implementation of Model Predictive Control

IEEE Access

TABLE 1. Sigmoid approximation error comparison.

Model slope, Orrl)ltriglrfgr Simulator error at sampling point
A (ms) ii (A) vei(V) Poi (W)

le6 750 0.26 3.83 25.32

le5 656 0.73 11.21 44.03

led4 629 2.10 30.31 126.71

transmitted power present a high increase of the error when
reducing the slope. However, when using the proposed mod-
els on an optimization problem, fastest results are obtained for
lower slopes, as presented on Table 1 resulting on a tradeoff
that must be considered when selecting the desired slope.
The complete MPC model formulation can be obtained by
concatenating the optimizer intervals and assuming that the
control parameters are constant during a switching cycle:

W o, ) if mod (k,3) =0
,[:ECI = —(l_fakia"’kf[m (xx, ug) if mod (k,3) =1
Mf[lm (o) if mod (k. 3) = 2

sw.k

(6)

To incorporate the continuous time ordinary differential
equations (6) in our discrete MPC formulation (1), a dis-
cretization with orthogonal collocation on finite elements has
been performed [34].

As a consequence of this discretization, the average trans-
mitted power, P, ;, which is the controller tracking parameter,
requires a two-step calculation. The average power at each
control interval is obtained by using the value of the states at
the collocation points, c:

Neol

— [e] [c]
Poik = Z"ozklnk(fk -

where n., denotes the number of collocation points and
the integral is approximated by a numerical integration in
which r,EC] denotes the time of collocation point ¢ in the
control interval k. And the average power for the switching
cycle is calculated by applying the previously described time
transformation to each of the non-zero v, ; control intervals:

T]chl])’ %)

Poi = Py i k| mod (k,3)=0 Dk +Poi k| mod k,3)=1 (1 —Dx) otj .
(®)

B. MPC OF THE MULTI-OUTPUT INVERTER
The complete MPC problem is intended to represent a multi-
output inverter with any number of branches and to achieve
proper efficiency-oriented power tracking.

The optimization problem to solve at the beginning of each
switching cycle can be presented as follows:

N Nbranch

2
minimize Z Z ((P(,’,»,k — PgeiS) + Crok
Jowie-Die-etike 1 =0 = ’

+Cofsw.k (i1,i k| mod (k,3)=1 —i1,i,k| mod (k,3)=0))
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subject to model in (5)
30 < fow.k < 70kHz,
0.1 <D, <09,
0.05 <ajr <0.9,
fswk = fswi—1,if mod(k, 3) =1, 2,
Dy = Dy_1,if mod(k,3) =1, 2,
Qi = djk—1,if mod(k,3) =1, 2,
irik > 0,if mod(k, 3) =1,
irik <0,if mod(k, 3) = 0. &)

On (9), the cost function includes three terms with weight-
ing parameters, C and C», to set the relative relevance of each
of them. The power tracking term is squared as it penalizes
negative and positive deviations equally. The second term is
related to the cohexistence of low side transistor ZVS and «;
as control parameter, and aims to minimize the number of
hard-switching turn on transitions. Last, the product of f;,,
and i ; kjmod(k,3)=1 and —i; ; kjmod(k,3)=2 Tepresent a figure of
merit (FOM) for the power loses due to the transisor turn off.
This FOM is always positive as it is constrained by the ZVS
imposition.

The constraints included in (9) can be divided in different
groups. The input constraints to limit the optimizer solution
to feasible ones, the input constraints to ensure thet the inputs
are kept constant within each switching cycle, and constraints
to achieve an overall high efficiency solution.

The efficiency constraints are related to ZVS transistor
activation. This soft-switching commutation eliminates tran-
sistor turn-on losses by ensuring that the associated antipar-
allel diode is conducting during the turn-on sequence, and
therefore, there is no voltage drop in the transistor. Therefore,
itis achieved by ensuring the correct current sign at the begin-
ning of control interval. This is especially relevant for Sy as
it is a shared activation component with higher current levels,
thus ZVS is achieved by setting i; ; x < 0 if mod(k,3) =0
For the case of Si j, NC-PDM modulation strategy requires
Du i conduction. Therefore, Dg ;, is not necessarily conduct-
ing and ZVS cannot be ensured for all cases. However, the
number of hard-switching commutation can be minimized
by implementing it as a soft constraint. In order to do so,
irix > 0if mod(k,3) = 1 and the «; term is added to the cost
function.

C. MPC TUNING, SIMULATION AND VALIDATION

In this paper, the optimization problems are solved by using
an interior point algorithm which is implemented in IPOPT.
All the derivative information is computed using automatic
differentiation via CasADi [35] and the MPC is implemented
using the toolbox do-mpc [36].

Additionally, as the MPC controller is conceived for a
DNN implementation, a constraint that ensures that Sy on
time is enough to evaluate the DNN can be added in the form
of fow kD > tan-

The prediction horizon is set to five switching intervals, i.e.
N =15, as it is considered enough for the system to reach the
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FIGURE 5. Performance of the propossed MPC+P controller during a
setpoint change, from P45 = 500 W P95 = 1000 W to PY€5 = 1500 W
Pdes — 500 W.

steady state. The tuning parameters are chosen as C; = 1-10*
and C; = 1-1073 in order to balance the relative contributions
in the cost function.

The parameters for the MPC model consider equal pot
material in all branches. Thus, V.. =230V, Ley; = 68.5 uH,
Req,i = 4.6 Q, and C, =400 nF.

Additionally, the sigmoid slope is A = 1e5 to achieve faster
resolution, which is required for the DNN data generation.
In order to minimize the approximation error, an additional
proportional controller, with a proportionality constant, K,
can be implemented, which varies the setpoint given to the
MPC, Pﬁ”f C. based on the difference between the desired

power, Pgef , and the measured one, P"%%.
MPC __ PC es meas
PTC =PlTC +K (le =Py ) (10)

The controller simulation is performed considering a two-
branch inverter. In order to increase the simulation precision
a spice model is used. Therefore, LTspice is launched every

65232

TABLE 2. Load uncertanity error.

. . Average Average
Lo;;irzflrllz:/ea;lsent Ave;erlrgoert(r;oc)kmg SH ZVS SL ZVS
(%) (%)

Base simulation 7.84 8.19 100 93.56
1.15Leg; 32.28 8.40 100 95.47
1.15R.,,; 14.11 9.06 100 92.59
0.85Leq,; 7.91 11.07 100 64.24
0.85R.q,s 3.50 8.13 100 91.09
With P controller (10) 0.73 0.76 100 92.05
1.15Leg; 9.99 1.66 100 91.50
1.15R.,,; 1.46 0.85 100 90.54
0.85Leq,; 1.69 1.17 100 67.26
0.85Req,s 0.75 1.00 100 89.45

switching cycle with the calculated control parameters and
the previous value of the state variables and provides the
new values of the state variables and an accurate power
calculation.

The load equivalent parameters for the spice model are
Leq,,' = 68.5 uH, and Req’,' = 27TfSWLeq’,'/Q,' with Q; =3.27,
which is a more accurate approximation of the IH load
behavior.

The simulation of a setpoint change is shown in Figure 5.
There can be seen a proper power tracking that respects the
SH ZVS constraints and presents at least one branch with
SL,i ZVS behavior during the steady state. In Table 2 the
results for a longer simulation with more setpoint variations
are shown. This table also includes a robustness analysis to
show the controller proper behavior with low accuracy in an
IH load equivalent parameter estimation.

IV. NEURAL NETWORK IMPLEMENTATION
As aforementioned, to achieve an efficient implementa-
tion, the approximation of the high-performance MPC using
DNNs is proposed. The selected neural network operates
with the current state of the system, i.e. the measured state
variables v, ; and i; ;, and the desired power, ngis as inputs and
provides the optimal control inputs for the current switching
cycle, fsw, D, and «; as outputs. Thus, the neural network
computation has to be done during Sy active time.

The chosen DNN presents L = 4 hidden layers, M =
30 neurons per layer and tanh is selected as the activation
function.

A. DATA GENERATION AND TRAINING

As the intended behavior of the DNN is to approximate the
control law, the data pairs for training are generated by the
simulation of closed loop operation with various setpoint
changes between random Pg’ef within the interval [0 2000]
W. Therefore, the state variables are dependent of the pre-
vious setpoint and MPC solution. The generated training
inputs can be seen in Figure 7 where the different power
setpoints are represented for the different states, i; ; and v, ;,
showing a complete coverage of the operation region and
an a non-homogeneous distribution that improves stead-state
stability.
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FIGURE 6. Performance of the DNN implementation of the MPC
controller during a setpoint change, from Pgels =500 W Pgezs = 1000 W to

des _ des _
Po,l = 1500 WPa’2 = 500 W.

The model used for the simulation matches the MPC one
but with a steeper sigmoid slope and Q; based R,,,; calcula-
tion. Additionally, as load simulation parameters are known
during training data generation, instead of being cost-function
dependent, Sy ; ZVS is added as a constraint for the more
power-demanding of the branches, improving performance.
Finally, a filtering of the training pairs is performed to avoid
learning steady state oscillating scenarios.

Two strategies for the training data have been evaluated.
Firstly, the direct learning of the control parameters as they
have been simulated, i.e. f;,, D, and ¢;, and, secondly, the use
of a PWM modulator parameters, implemented as a counter
and comparator, i.e. converting the control parameters into
comparator instants as: D/fs,, (D+(1-D)a;)/fsy, and 1/fs,.

The training of the neural network is performed using
Keras in Tensorflow [37]. In Table 3 the results for the

VOLUME 10, 2022
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FIGURE 7. Operation region sweep for DNN training data generation.
Power setpoint vs the different states, i ; (a) and v, ; (b).

TABLE 3. Training pairs shape influence.

Data Average test error
postprocessmg fsw (kHZ) D (_) a; (_) o (_)
Sim. format. 0.4361 0.0063 0.0143 0.0160
Comp. format 0.3092 0.0055 0.0152 0.0165

TABLE 4. Training pairs generation performance.

Load equivalent Average tracking gﬁeéa\% [SXI\:C;{%SC
parameters error (%) (%) (%)
Ideal setpoint 10.66 9.52 100 99.72
Real setpoint 1.82 1.73 100 99.45

training with the different control parameter approach can be
seen. There, comparator based DNN achieves better results
for f;,, and the learning differences between the remaining
parameters are not significant.

B. DNN SIMULATION AND VALIDATION

The simulation testbench corresponds with the used for the
standard MPC controller. In Table 4 the performance results
for two training data sets can be seen. The first one consid-
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FIGURE 8. DNN main operation blocks.

TABLE 5. DNN implementation resources.

DSP 116 87%
LUTs 32,830 69%
FFs 11,729 12%

ers zero power error in reaching Pgef when generating the
training data and the second one assumes real steady state P, ;
as the setpoint. As it can be seen, both cases maintain Sy ZVS
and achieve good Sy ; ZVS performance, but, additionally,
the second approach is able to correct the error due to the
model simplification. On III-B the same setpoint change as
in the MPC case has been represented to show the proper
operation with the real setpoint approximation, i.e. the one
that uses P, ;.

FIGURE 9. Experimental setup.

V. FPGA IMPLEMENTATION AND EXPERIMENTAL
RESULTS

When implementing the DNN to control a functioning pro-
totype, a trade-off between computation speed and resource
utilization in order to allow a good place and route of the HDL
synthesizer is intended. In this paper, the selected FPGA is the
Spartan 6 XC6SL75 and the programing file is generated via
Xilinx ISE.

A. FPGA IMPLEMENTATION

To achieve a proper behavior, the DNN implementation has
to take into account the new input data sensing and output
data compatibility with the modulator.

New data sensing is synchronized with Sy deactivation,
therefore, ADC time has to be included in the DNN solving
time. The normalization of the ADC measurement to the
DNN input include the dependences with the sensor offset,

Vo1 b1
A
[ I |
» | Gy, |
o ADC¢s | |
[ | ADCy,
T
= [ DNNepy |
| 18]t - | i Timebase 3.6 ps||Trigger (1) 1Sl
100 Vidiv 10.0 A/div 200 Vidiv| 5.00 V/div 10.0 Vidiv 10.0 Vidiv 5.00 V/div| 5.00 V/di Stop 111V
0.00Voffss]  00mAofst]  0mVoffse -14.9600 V 10.2000 V 99000 V -5.0000 V -10.3500 V [ Width Positive,

FIGURE 10. Ready signal of the different implementation blocks. From top to bottom: IH load 1 v, ; (100 V/div, yellow), i ; (10 A/div, pink), and v ,
(200 V/div, dark blue), Sy gate signal, Gy (10 V/div, grey), S, ; gate signal, Gg; ; (10 V/div, light biue), ADC capture signal, ADCcs (5 V/div, red), ADC
new data signal, ADCyp (5 V/div, orange), and DNN new resuit signal, DNNgpy (5 V/div, green). Time axis: 5 ps/div.
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| | GERE cs : Timebase 24 ps||Trigger )8
100 V/div 10.0 A/div| 200 Vidiv 100 V/ 10.0 A/div| 200 V/div : Stop 11V
0.00 V offset 0.0 mA ofs| 0 mV offset 0 mV offse 0.0 mA ofst| 0 mV of fset Width Positive
(b)

FIGURE 11. Setpoint change to a higher (a) and lower (b) desired power. On each oscilloscope capture, from top to bottom: IH load 1 v, ;
(100 V/div, yellow), ij ; (10 A/div, pink), and v ; (200 V/div, dark blue), and IH load 2 v, ; (100 V/div, grey), ij ; (10 A/div, light blue), and Vel
(200 V/div, red). Time axis: 50 us/div. Measures P1 to P4 represent the temporal evolution of the transmitted power to IH load 1, P, ;, and P5
to P8 represent the temporal evolution of the transmitted power to IH load 2, P, .

Soff » and gain, sgqin, leading to a single two step operation

lower_bound[x]
range[x]

Xapc < Soffset
Sgainrange(X] Sgainrange(x]

)%nn =
(11)

The selected modulator is based on a counter and com-
parator. Thus, the DNN output only requires to revert the
normalization.

The DNN structures is based in the schematic depicted in
Figure 8. The operations are implemented as float32 cores.
Each neuron operation is done sequentially in order to limit
the carry path length, allowing the multiplier and adder reuti-
lization. Therefore, neuron parallelization is possible with up
to 28 neurons, as enough DSP slices are available. Activation
function tanh is implemented by means of a look up table
and is called sequentially by the neurons. The layer calcula-
tion time is n;,+ M clock cycles. The layers are calculated
sequentially, allowing hardware reutilization, as the input of

VOLUME 10, 2022

each layer is the output of the previous. Table 5 summarizes
the complete implementation resources.

B. EXPERIMENTAL RESULTS

The experimental setup shown in Figure 9 uses the prototype
presented in [32] with two connected inductors and two equal
material pots on top of each of them.

Figure 10 presents the flags related to the different calcu-
lation steps. The upper two are the transistor gate signals,
the subsequent two are related to the data acquisition, i.e.
measure synchronization and available ADC data, and the last
one corresponds with the DNN solution end of calculation.
As it can be seen, the ADC sample is synchronized with
SL turn off and ADC data transmission and DNN evaluation
occur, as expected, during SH on time so the results can be
applied in the same switching cycle.

Figure 11 shows the main waveforms in a power stepdown
change and a power stepup change starting in equal power
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transmission. These waveforms show that ZVS is achieved
in Sy turn on and in Sp; turn on when possible, i.e. when
both load transmitted power is equal and at least for one
branch when the desired power is different. Additionally, both
captures include the power measurements corresponding to
differently spaced switching cycles, where the power setpoint
change can be appreciated. When compared with the simu-
lation results, the main differences arise on the transmitted
power error increase, which is a consequence of the mismatch
between the real induction load and the simulation model.
For example, while equivalent parameters R, ; and L., ; are
considered constant for simulation, they present a high depen-
dency on the pot temperature. In order to decrease this error,
the proportional controller proposed in (10), which presents
good results on simulation, can be implemented.

VI. CONCLUSION

The widespread of flexible surface induction heating cook-
tops is paired with the development of cost-effective versatile
multi-output converters. These converters require complex
control strategies in order to operate with high efficiency.

In this paper a MPC control strategy for a multi-output
ZVS resonant converter operating with a non-complementary
modulation has been proposed and analyzed and its imple-
mentation with a DNN has been evaluated via simulation and
experimental results.

The controller has proven to achieve proper desired power
tracking while ensuring ZVS commutation in the shared high
side transistor, increasing efficiency by reducing power losses
in said critical device. Additionally, ZVS in low side transis-
tor is ensured in steady state for at least one of them. The
proposed strategy has been tested using a domestic induction
heating prototype operating under real operating conditions,
proving the feasibility of the proposed control strategy and
implementation.
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