12 research outputs found

    Immunsystemets mekanismer relatert til kreft og kreftvaksine, samt en vurdering av kreftvaksine i klinisk utprøving

    Get PDF
    Our purpose has been to give to the reader an insight in the development of cancer vaccines. The paper is built up stepwise with a smooth start reviewing the historical aspects of cancer treatment, ranging from the ancient Egypt to gene therapy. Further we build the base by looking at immune physiology and cancer development in general. Then we try to combine these two subjects by reviewing the available knowledge about tumour associated antigens and different strategies used to eradicate tumour. Clinical trials of cancer vaccines are further presented. We focus on melanoma-, prostate- and lung cancer vaccines and endeavour to give the latest and most varied selection. As this field of research is still very new we could only find early clinical trials (phase I/II), but some trials have the potential to be extended to large scale trials because of encouraging results. In spite of this, no trial has shown any striking results and there is a lot of work left to do. There is a need to find more potent tumour antigens, more effective adjuvants, the right way to administer the vaccine and the best dose. Perhaps the most striking result so far is the lack of toxicity associated with this form of treatment. Seeing the fast development and advance of knowledge in this field of treatment and the numerous possibilities hidden in the immune defence system, we predict that tumour vaccination will be available for treating cancer in some decades

    En mann i 50-årene med kronisk diaré og vekttap

    No full text

    HLA-DQ-Gluten Tetramer Blood Test Accurately Identifies Patients With and Without Celiac Disease in Absence of Gluten Consumption

    No full text
    Background & Aims: Celiac disease is characterized by HLA-DQ2/8-restricted responses of CD4+ T cells to cereal gluten proteins. A diagnosis of celiac disease based on serologic and histologic evidence requires patients to be on gluten-containing diets. The growing number of individuals adhering to a gluten-free diet (GFD) without exclusion of celiac disease complicates its detection. HLA-DQ–gluten tetramers can be used to detect gluten-specific T cells in blood of patients with celiac disease, even if they are on a GFD. We investigated whether an HLA-DQ–gluten tetramer-based assay accurately identifies patients with celiac disease. Methods: We produced HLA-DQ–gluten tetramers and added them to peripheral blood mononuclear cells isolated from 143 HLA-DQ2.5+ subjects (62 subjects with celiac disease on a GFD, 19 subjects without celiac disease on a GFD [due to self-reported gluten sensitivity], 10 subjects with celiac disease on a gluten-containing diet, and 52 presumed healthy individuals [controls]). T cells that bound HLA-DQ–gluten tetramers were quantified by flow cytometry. Laboratory tests and flow cytometry gating analyses were performed by researchers blinded to sample type, except for samples from subjects with celiac disease on a gluten-containing diet. Test precision analyses were performed using samples from 10 subjects. Results: For the HLA-DQ–gluten tetramer-based assay, we combined flow-cytometry variables in a multiple regression model that identified individuals with celiac disease on a GFD with an area under the receiver operating characteristic curve value of 0.96 (95% confidence interval [CI] 0.89–1.00) vs subjects without celiac disease on a GFD. The assay detected individuals with celiac disease on a gluten-containing diet vs controls with an area under the receiver operating characteristic curve value of 0.95 (95% CI 0.90–1.00). Optimized cutoff values identified subjects with celiac disease on a GFD with 97% sensitivity (95% CI 0.92–1.00) and 95% specificity (95% CI 0.84–1.00) vs subjects without celiac disease on a GFD. The values identified subjects with celiac disease on a gluten-containing diet with 100% sensitivity (95% CI 1.00–1.00]) and 90% specificity (95% CI 0.83–0.98) vs controls. In an analysis of 4 controls with positive results from the HLA-DQ–gluten tetramer test, 2 had unrecognized celiac disease and the remaining 2 had T cells that proliferated in response to gluten antigen in vitro. Conclusions: An HLA-DQ–gluten tetramer-based assays that detects gluten-reactive T cells identifies patients with and without celiac disease with a high level of accuracy, regardless of whether the individuals are on a GFD. This test would allow individuals with suspected celiac disease to avoid gluten challenge and duodenal biopsy, but requires validation in a larger study. Clinicaltrials.gov no: NCT02442219

    In well‐treated celiac patients low‐level mucosal inflammation predicts response to 14‐day gluten challenge

    No full text
    In celiac disease (CeD), gluten activates adaptive immune cells that cause damage to the small intestinal mucosa. Histological evaluation of intestinal biopsies allows for grading of disease severity. CeD can effectively be treated with a life-long gluten-free diet. Gluten challenge of treated CeD patients is used to confirm diagnosis and to test drug efficacy in clinical trials, but patients respond with different magnitudes to the same gluten challenge. In this study of 19 well-treated CeD patients, proteome analysis of total tissue or isolated epithelial cell compartment from formalin-fixed paraffin embedded biopsies collected before and after 14-day gluten challenge demonstrates that patients with strong mucosal response to challenge have signs of ongoing tissue inflammation already before challenge. This low-level tissue inflammation at baseline is paralleled by increased gluten specific CD4+ T-cell frequencies in the gut and presence of a low-level blood inflammatory profile. Thus, apparently well-treated CeD is frequently not entirely quiescent, with presence of low-grade inflammation and antigluten immunity in the gut mucosa. Histology assessment alone appears insufficient to judge full recovery and gut mucosal healing of CeD patients. The findings raise a concern whether a seemingly proper gluten-free diet is able to curb gut inflammation in all CeD patients

    TCR sequencing of single cells reactive to DQ2.5-glia-α2 and DQ2.5-glia-ω2 reveals clonal expansion and epitope-specific V-gene usage

    No full text
    CD4+ T cells recognizing dietary gluten epitopes in the context of disease-associated human leukocyte antigen (HLA)-DQ2 or HLA-DQ8 molecules are the key players in celiac disease pathogenesis. Here, we conducted a large-scale single-cell paired T-cell receptor (TCR) sequencing study to characterize the TCR repertoire for two homologous immunodominant gluten epitopes, DQ2.5-glia-α2 and DQ2.5-glia-ω2, in blood of celiac disease patients after oral gluten challenge. Despite sequence similarity of the epitopes, the TCR repertoires are unique but shared several overall features. We demonstrate that clonally expanded T cells dominate the T-cell responses to both epitopes. Moreover, we find V-gene bias of TRAV26, TRAV4, and TRBV7 in DQ2.5-glia-α2 reactive TCRs, while DQ2.5-glia-ω2 TCRs displayed significant bias toward TRAV4 and TRBV4. The knowledge that antigen-specific TCR repertoire in chronic inflammatory diseases tends to be dominated by a few expanded clones that use the same TCR V-gene segments across patients is important information for HLA-associated diseases where the antigen is unknown

    HLA-DQ:gluten tetramer test in blood gives better detection of coeliac patients than biopsy after 14-day gluten challenge.

    No full text
    Objective: Initiation of a gluten-free diet without proper diagnostic work-up of coeliac disease is a frequent and demanding problem. Recent diagnostic guidelines suggest a gluten challenge of at least 14 days followed by duodenal biopsy in such patients. The rate of false-negative outcome of this approach remains unclear. We studied responses to 14-day gluten challenge in subjects with treated coeliac disease. Design: We challenged 20 subjects with biopsy-verified coeliac disease, all in confirmed mucosal remission, for 14 days with 5.7 grams per oral gluten daily. Duodenal biopsies were collected. Blood was analysed by multiplex assay for cytokine detection, and by flow cytometry using HLA-DQ:gluten tetramers. Results: Nineteen participants completed the challenge. Villous blunting appeared at end of challenge in 5 of 19 subjects. Villous height to crypt depth ratio reduced with at least 0.4 concomitantly with an increase in intraepithelial lymphocyte count of at least 50% in 9 of 19 subjects. Interleukin-8 plasma concentration increased by more than 100% after 4 hours in 7 of 19 subjects. Frequency of blood CD4+ effector-memory gut-homing HLA-DQ:gluten tetramer-binding T cells increased by more than 100% on day 6 in 12 of 15 evaluated participants. Conclusion: A 14-day gluten challenge was not enough to establish significant mucosal architectural changes in majority of patients with coeliac disease (sensitivity ≈25%–50%). Increase in CD4+ effector-memory gut-homing HLA-DQ:gluten tetramer-binding T cells in blood 6 days after gluten challenge is a more sensitive and less invasive biomarker that should be validated in a larger study

    Fructan, and not gluten, as symptom trigger in self-reported non-celiac gluten sensitivity.

    No full text
    Background & Aims: Non-celiac gluten sensitivity is characterized by symptom improvement after gluten withdrawal in absence of celiac disease. The mechanisms of non-celiac gluten sensitivity are unclear, and there are no biomarkers for this disorder. Foods with gluten often contain fructans, a type of fermentable oligo-, di-, monosaccharides and polyols. We aimed to investigate the effect of gluten and fructans separately in individuals with self-reported gluten sensitivity. Methods: We performed a double-blind crossover challenge of 59 individuals on a self-instituted gluten-free diet, for whom celiac disease had been excluded. The study was performed at Oslo University Hospital in Norway from October 2014 through May 2016. Participants were randomly assigned to groups placed on diets containing gluten (5.7 g), fructans (2.1 g), or placebo, concealed in muesli bars, for 7 days. Following a minimum 7-day washout period (until the symptoms induced by the previous challenge were resolved), participants crossed over into a different group, until they completed all 3 challenges (gluten, fructan, and placebo). Symptoms were measured by Gastrointestinal Symptom Rating Scale Irritable Bowel Syndrome (GSRS-IBS) version. A linear mixed model for analysis was used. Results: Overall GSRS-IBS scores differed significantly during gluten, fructan, and placebo challenges; mean values were 33.1 ± 13.3, 38.6 ± 12.3, and 34.3 ± 13.9, respectively (P = .04). Mean scores for GSRS-IBS bloating were 9.3 ± 3.5, 11.6 ± 3.5, and 10.1 ± 3.7, respectively, during the gluten, fructan, and placebo challenges (P = .004). The overall GSRS-IBS score for participants consuming fructans was significantly higher than for participants consuming gluten (P = .049), as was the GSRS bloating score (P = .003). Thirteen participants had the highest overall GSRS-IBS score after consuming gluten, 24 had the highest score after consuming fructan, and 22 had the highest score after consuming placebo. There was no difference in GSRS-IBS scores between gluten and placebo groups. Conclusions: In a randomized, double-blind, placebo-controlled crossover study of individuals with self-reported non-celiac gluten sensitivity, we found fructans to induce symptoms, measured by the GSRS-IBS. Clinicaltrials.gov no: NCT02464150

    Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease

    No full text
    Little is known about the repertoire dynamics and persistence of pathogenic T cells in HLA-associated disorders. In celiac disease, a disorder with a strong association with certain HLA-DQ allotypes, presumed pathogenic T cells can be visualized and isolated with HLA-DQ:gluten tetramers, thereby enabling further characterization. Single and bulk populations of HLA-DQ:gluten tetramer–sorted CD4+ T cells were analyzed by high-throughput DNA sequencing of rearranged TCR-α and -β genes. Blood and gut biopsy samples from 21 celiac disease patients, taken at various stages of disease and in intervals of weeks to decades apart, were examined. Persistence of the same clonotypes was seen in both compartments over decades, with up to 53% overlap between samples obtained 16 to 28 years apart. Further, we observed that the recall response following oral gluten challenge was dominated by preexisting CD4+ T cell clonotypes. Public features were frequent among gluten-specific T cells, as 10% of TCR-α, TCR-β, or paired TCR-αβ amino acid sequences of total 1813 TCRs generated from 17 patients were observed in 2 or more patients. In established celiac disease, the T cell clonotypes that recognize gluten are persistent for decades, making up fixed repertoires that prevalently exhibit public features. These T cells represent an attractive therapeutic target

    Mosaic deletion patterns of the human antibody heavy chain gene locus shown by Bayesian haplotyping

    No full text
    Analysis of antibody repertoires by high-throughput sequencing is of major importance in understanding adaptive immune responses. Our knowledge of variations in the genomic loci encoding immunoglobulin genes is incomplete, resulting in conflicting VDJ gene assignments and biased genotype and haplotype inference. Haplotypes can be inferred using IGHJ6 heterozygosity, observed in one third of the people. Here, we propose a robust novel method for determining VDJ haplotypes by adapting a Bayesian framework. Our method extends haplotype inference to IGHD- and IGHV-based analysis, enabling inference of deletions and copy number variations in the entire population. To test this method, we generated a multi-individual data set of naive B-cell repertoires, and found allele usage bias, as well as a mosaic, tiled pattern of deleted IGHD and IGHV genes. The inferred haplotypes may have clinical implications for genetic disease predispositions. Our findings expand the knowledge that can be extracted from antibody repertoire sequencing data

    Cytokine release after gluten ingestion differentiates coeliac disease from self-reported gluten sensitivity

    No full text
    Diagnosing coeliac disease (CD) in patients on a gluten-free diet (GFD) is difficult. Ingesting gluten elevates circulating interleukin (IL)-2, IL-8 and IL-10 in CD patients on a GFD. We tested whether cytokine release after gluten ingestion differentiates patients with CD from those with self-reported gluten sensitivity (SR-GS). Australian patients with CD ( n = 26) and SR-GS ( n = 18) on a GFD consumed bread (estimated gluten 6 g). Serum at baseline and at 3 and 4 h was tested for IL-2, IL-8 and IL-10. Separately, Norwegian SR-GS patients ( n = 49) had plasma cytokine assessment at baseline and at 2, 4 and 6 h after food bars containing gluten (5.7 g), fructan or placebo in a previous double-blind crossover study. Gluten significantly elevated serum IL-2, IL-8 and IL-10 at 3 and 4 h in patients with CD but not SR-GS. The highest median fold-change from baseline at 4 h was for IL-2 (8.06, IQR: 1.52–24.0; P < 0.0001, Wilcoxon test). The two SR-GS cohorts included only one (1.5%) confirmed IL-2 responder, and cytokine responses to fructan and placebo were no different to gluten. Overall, cytokine release after gluten was present in 22 (85%) CD participants, but 2 of the 4 non-responders remained clinically well after 1 y on an unrestricted diet. Hence, cytokine release occurred in 22 (92%) of 24 ‘verified’ CD participants. Gluten challenge with high-sensitivity cytokine assessment differentiates CD from SR-GS in patients on a GFD and identifies patients likely to tolerate gluten reintroduction. Systemic cytokine release indicating early immune activation by gluten in CD individuals cannot be detected in SR-GS individuals
    corecore