2,407 research outputs found

    Effects of two dimensional plasmons on the tunneling density of states

    Full text link
    We show that gapless plasmons lead to a universal (δν(ϵ)/νϵ/EF)(\delta\nu(\epsilon)/\nu\propto |\epsilon|/E_F) correction to the tunneling density of states of a clean two dimensional Coulomb interacting electron gas. We also discuss a counterpart of this effect in the "composite fermion metal" which forms in the presence of a quantizing perpendicular magnetic field corresponding to the half-filled Landau level. We argue that the latter phenomenon might be relevant for deviations from a simple scaling observed by A.Chang et al in the tunneling IVI-V characteristics of Quantum Hall liquids.Comment: 12 pages, Latex, NORDITA repor

    Ferromagnetic and random spin ordering in diluted magnetic semiconductors

    Full text link
    In a diluted magnetic semiconductor system, the exchange interaction between magnetic impurities has two independent components: a direct antiferromagnetic interaction and a ferromagnetic interaction mediated by charge carriers. Depending on the system parameters, the ground state of the system may be ordered either ferromagnetically or randomly. In this paper we use percolation theory to find the ferromagnetic transition temperature and the location of the quantum critical point separating the ferromagnetic phase and a valence bond glass phase.Comment: 9 pages, 2 figures, a reference adde

    Charged impurity scattering limited low temperature resistivity of low density silicon inversion layers

    Full text link
    We calculate within the Boltzmann equation approach the charged impurity scattering limited low temperature electronic resistivity of low density nn-type inversion layers in Si MOSFET structures. We find a rather sharp quantum to classical crossover in the transport behavior in the 050 - 5K temperature range, with the low density, low temperature mobility showing a strikingly strong non-monotonic temperature dependence, which may qualitatively explain the recently observed anomalously strong temperature dependent resistivity in low-density, high-mobility MOSFETs.Comment: 5 pages, 2 figures, will appear in PRL (12 July, 1999

    Water characteristics, mixing and circulation in the Bay of Bengal during southwest monsoon

    Get PDF
    Influence of the freshwater influx, the wind forcing and the Indian Ocean monsoon drift current on the property distributions and the circulation in the Bay of Bengal during southwest monsoon has been quantified. At the head of the Bay, waters of low salinity, affected by the freshwater influx, occupy the upper 90 m water column. The isohaline 34.0 × 10−3 separating these waters from those of underlying saline waters shoals southward gradually and outcrops around 14N, 10N and 6N in the western, central and southeastern regions of the Bay respectively. The wind-stress-curl-induced upwelling effect is confined to depth limits of 50–100 m as is supported by a band of cold (24°–19°C) water in the central Bay. In the southern and central regions of the Bay, the monsoon drift current feeds the large scale cyclonic gyre apart from maintaining the northward flowing boundary current in the eastern Bay. A warm (27°–23°C), saline (35.0–35.2 × 10−3) watermass is advected northeastward along with the monsoon drift current into the Bay up to 14N at the depth limits of 50–100 m. Below this depth, in the western Bay a well-defined southward flow in the form of a boundary current is documented. Intense vertical mixing is inferred at the zones of salinity fronts in the depth limits of 40–100 m and also at deeper depths (\u3e 2200 m) and elsewhere lateral mixing is predominant

    Switching of the topologically trivial and non-trivial quantum phase transitions in compressed 1T-TiTe2: Experiments and Theory

    Get PDF
    We report the structural, vibrational and electrical transport properties up to 16 GPa of the 1T-TiTe2, a prominent layered 2D system, which is predicted to show a series of topologically trivial - nontrivial transitions under hydrostatic compression. We clearly show signatures of two iso-structural transition at 2 GPa and 4 GPa obtained from the minima in c/a ratio concomitant with the phonon linewidth anomalies of Eg and A1g modes at around the same pressures, providing strong indication of unusual electron-phonon coupling associated to these transitions. Resistivity presents nonlinear behavior over similar pressure ranges providing a strong indication of the electronic origin of these pressure driven isostructural transitions. Our data thus provide clear evidences of topological changes at A and L point of the Brillouin zone predicted to be present in the compressed 1T-TiTe2. Between 4 GPa and 8 GPa, the c/a ratio shows a plateau suggesting a transformation from an anisotropic 2D layer to a quasi 3D crystal network. First principles calculations suggest that the 2D to quasi 3D evolution without any structural phase transitions is mainly due to the increased interlayer Te-Te interactions (bridging) via the charge density overlap. In addition to the pressure dependent isostructural phase transitions, our data also evidences the occurrence of a first order structural phase transition from the trigonal (P-3m1) phase at higher pressures. We estimate the start of this structural phase transition to be 8 GPa and the symmetric of the new high-pressure phase to be monoclinic (C2/m).Comment: 22 pages, 11 Figures, 2 Table

    Decay-Time Asymmetries at the B-Factories

    Full text link
    Absract (Invited talk at the X DAE High Energy Physics symposium in December 1992, held at Tata Institute of Fundamental Research, Bombay)Comment: 20pages, TIFR/TH/93-1

    Model simulation of tide-induced currents in Gauthami-Godavari estuary

    Get PDF
    Predictive spatial distribution of flow field has been simulated from the time series data on currents and tides during dry season (11-19, February, 2009) in the Gauthami-Godavari Estuary utilizing TIDAL model. A 2D-Tidal Estuarine model has been considered (instead of 3D model) due to well-mixed type system and its circulation is dominated by tides during the observational period. The model forcing functions consist of wind and tidal elevations along the open boundaries and no fresh water inflow from the main stream and no land flood in river system. The bathymetry data of the river basin has been collected and supplemented to the model as one of the rigid boundary conditions to evaluate integration. The bottom roughness length (K) was adjusted to achieve model calibration and verification in model simulations of flow field. The model simulation results are in qualitative agreement with the observational data with calibrated bottom roughness length which is about 0.085 m. Model results reveal that the majority of flow was found to be along the channel axis (i.e. high iso-bath contour). During flood time, flow is south-west direction and it is changed to northeast direction during ebb period which is indicating that the model results resemble flow in the real eastern system

    Fermi-liquid behaviour of the low-density 2D hole gas in GaAs/AlGaAs heterostructure at large values of r_s

    Full text link
    We examine the validity of the Fermi-liquid description of the dilute 2D hole gas in the crossover from 'metallic'-to-'insulating' behaviour of R(T).It has been established that, at r_s as large as 29, negative magnetoresistance does exist and is well described by weak localisation. The dephasing time extracted from the magnetoresistance is dominated by the T^2 -term due to Landau scattering in the clean limit. The effect of hole-hole interactions, however, is suppressed when compared with the theory for small r_s.Comment: 4 pages ReVTeX, 4 ps figure

    Critical behavior of thermopower and conductivity at the metal-insulator transition in high-mobility Si-MOSFET's

    Get PDF
    This letter reports thermopower and conductivity measurements through the metal-insulator transition for 2-dimensional electron gases in high mobility Si-MOSFET's. At low temperatures both thermopower and conductivity show critical behavior as a function of electron density which is very similar to that expected for an Anderson transition. In particular, when approaching the critical density from the metallic side the diffusion thermopower appears to diverge and the conductivity vanishes. On the insulating side the thermopower shows an upturn with decreasing temperature.Comment: 4 pages with 3 figure

    The relative importance of electron-electron interactions compared to disorder in the two-dimensional "metallic" state

    Full text link
    The effect of substrate bias and surface gate voltage on the low temperature resistivity of a Si-MOSFET is studied for electron concentrations where the resistivity increases with increasing temperature. This technique offers two degrees of freedom for controlling the electron concentration and the device mobility, thereby providing a means to evaluate the relative importance of electron-electron interactions and disorder in this so-called ``metallic'' regime. For temperatures well below the Fermi temperature, the data obey a scaling law where the disorder parameter (kFlk_{\rm{F}}l), and not the concentration, appears explicitly. This suggests that interactions, although present, do not alter the Fermi-liquid properties of the system fundamentally. Furthermore, this experimental observation is reproduced in results of calculations based on temperature-dependent screening, in the context of Drude-Boltzmann theory.Comment: 5 pages, 6 figure
    corecore