49 research outputs found

    Assessment of sustainable groundwater utilization with case studies from semi-arid Namibia

    Get PDF
    Philosophiae Doctor - PhDThe thesis addresses sustainability of groundwater utilization in arid and semiarid regions of Namibia. Recharge in this hydrogeological setting occurs as discrete events to aquifers that are bounded in extent. Case studies involving fractured hardrock and alluvial aquifers with aquifer-ephemeral river interaction were considered. The nature of recharge to arid region bounded aquifers was explored. In arid region aquifers, roundwater storage is depleted during extended dry periods due to pumping and natural discharge. Steady state conditions are rarely achieved. With lowering of the water table, evapotranspiration is reduced thus decreasing aquifer discharge. However, depletion of ephemeral river flow is the primary source of water to boreholes. Physical constraints such as river bed and aquifer hydraulic properties set a limit to the degree of natural replenishment possible during flow events. An approach to assessing sustainable yield of a fractured rock aquifer associated with ephemeral river flow is discussed using a case study from rural semi-arid Namibia. Limited data required the simulation results to be verified against geological and hydrogeological constraints. The aquifer’s gain in storage is estimated through numerical simulation. It provides a basis for groundwater scheme management that rely on limited data in semi-arid conditions in sub-Saharan Africa. Aspects related to ephemeral river flow and groundwater recharge to strip alluvial aquifers was addressed in the second case study. The processes controlling infiltration, significance of surface water and groundwater losses, and possible artificial recharge options were investigated through numerical simulation. It was concluded that recharge processes in arid alluvial aquifers differ significantly from those in humid systems. Conjunctive use of surface and groundwater resources require artificial augmentation of aquifer recharge due to constrains in natural infiltration rates. The study provides a reference for sustainable management of alluvial aquifer systems in similar regions. It is seen from the study that high rates of groundwater exploitation deplete surface water resources needed downstream while failure to capture surface flow during flood events cause loss of potential recharge. It is concluded that as water demand in Namibia increases, basin wide combined surface water and groundwater resource evaluation and management have become a necessity

    Synthesis of carbon-14, carbon-13 and deuterium labeled forms of thioacetamide and thioacetamide S-oxide

    Get PDF
    This is the peer reviewed version of the following article: Sarma, D., & Hanzlik, R. P. (2011). Synthesis of carbon-14, carbon-13 and deuterium labeled forms of thioacetamide and thioacetamide S-oxide. Journal of Labelled Compounds & Radiopharmaceuticals, 54(13), 795–798. http://doi.org/10.1002/jlcr.1933, which has been published in final form at http://doi.org/10.1002/jlcr.1933. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Thioacetamide (TA) is a model hepatotoxin that undergoes metabolic activation via two successive S-oxidations. The ultimate toxic metabolite thioacetamide S,S-dioxide, or its tautomer acetimidoyl sulfinic acid CH3C(NH)SO2H, then acylates lysine side chains on cellular proteins leading to cellular dysfunction or death. To identify individual target proteins, quantitate the extent of their modification and elucidate the structural details of their modification we required both radio-labeled and stable-labeled forms of TA and its intermediate metabolite thioacetamide S-oxide (TASO). The latter is stable when purified but can be difficult to isolate. Considering currently available isotopic precursors we devised and report here methods for the synthesis and isolation of TA and TASO labeled with C-14, C-13 and/or deuterium. The methods are straightforward, utilize readily available precursors and are amenable to small scale

    Protein Targets of Thioacetamide Metabolites in Rat Hepatocytes

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemical Research in Toxicology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/tx400001xThioacetamide (TA) has long been known as a hepatotoxicant whose bioactivation requires S-oxidation to thioacetamide S-oxide (TASO) and then to the very reactive S,S-dioxide (TASO2). The latter can tautomerize to form acylating species capable of covalently modifying cellular nucleophiles including phosphatidylethanolamine (PE) lipids and protein lysine side chains. Isolated hepatocytes efficiently oxidize TA to TASO but experience little covalent binding or cytotoxicity because TA is a very potent inhibitor of the oxidation of TASO to TASO2. On the other hand hepatocytes treated with TASO show extensive covalent binding to both lipids and proteins accompanied by extensive cytotoxicity. In this work, we treated rat hepatocytes with [14C]-TASO and submitted the mitochondrial, microsomal and cytosolic fractions to 2DGE which revealed a total of 321 radioactive protein spots. To facilitate the identification of target proteins and adducted peptides we also treated cells with a mixture of TASO/[13C2D3]-TASO. Using a combination of 1DGE- and 2DGE-based proteomic approaches, we identified 187 modified peptides (174 acetylated, 50 acetimidoylated and 37 in both forms) from a total of 88 non-redundant target proteins. Among the latter, 57 are also known targets of at least one other hepatotoxin. The formation of both amide- and amidine-type adducts to protein lysine side chains is in contrast to the exclusive formation of amidine-type adducts with PE phospholipids. Thiobenzamide (TB) undergoes the same two-step oxidative bioactivation as TA, and it also gives rise to both amide and amidine adducts on protein lysine side chains but only amidine adducts to PE lipids. Despite their similarity in functional group chemical reactivity, only 38 of 62 known TB target proteins are found among the 88 known targets of TASO. The potential roles of protein modification by TASO in triggering cytotoxicity are discussed in terms of enzyme inhibition, protein folding and chaperone function, and the emerging role of protein acetylation in intracellular signaling and the regulation of biochemical pathways

    Majuli at the Crossroads: A Study of Cultural Geomorphology

    Get PDF
    Although well established elsewhere, cultural geomorphology has not yet been well-grounded in Northeast India where a perceived dearth of studies in this sub-branch of geography exists. The Brahmaputra valley, which has a long physical and cultural history, is a unique laboratory, which offers opportunities to study anthropo-geomorphologic, achaeo-geomorphologic and cultural landscapes. The Majuli river island, ostensibly the largest island in the world, houses traditional art crafts and dances, despite being continually under the siege of a plethora of physical obstacles such as flooding, bank erosion, etc..  The present study aims at studying how the physical processes that constantly reshape the map of the island exert their influence on the socio-economic and cultural milieu of the region. The paper further analyses why despite all odds Majuli thrives and continues to preserve and maintain its rich natural and cultural heritage, in ways that are perhaps unparalleled in the region or even elsewhere in the globe

    Metabolism and Toxicity of Thioacetamide and Thioacetamide SOxide in Rat Hepatocytes

    Get PDF
    “This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemical Research in Toxicology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/tx3002719The hepatotoxicity of thioacetamide (TA) has been known since 1948. In rats, single doses cause centrilobular necrosis accompanied by increases in plasma transaminases and bilirubin. To elicit these effects TA requires oxidative bioactivation leading first to its S-oxide (TASO) and then to its chemically reactive S,S-dioxide (TASO2) which ultimately modifies amine-lipids and proteins. To generate a suite of liver proteins adducted by TA metabolites for proteomic analysis, and to reduce the need for both animals and labeled compounds, we treated isolated hepatocytes directly with TA. Surprisingly, TA was not toxic at concentrations up to 50 mM for 40 hr. On the other hand, TASO was highly toxic to isolated hepatocytes as indicated by LDH release, cellular morphology and vital staining with Hoechst 33342/propidium iodide. TASO toxicity was partially blocked by the CYP2E1 inhibitors diallyl sulfide and 4-methylpyrazole, and was strongly inhibited by TA. Significantly, we found that hepatocytes produce TA from TASO relatively efficiently by back-reduction. The covalent binding of [14C]-TASO is inhibited by unlabeled TA which acts as a “cold-trap” for [14C]-TA and prevents its re-oxidation to [14C]-TASO. This in turn increases the net consumption of [14C]-TASO despite the fact that its oxidation to TASO2 is inhibited. The potent inhibition of TASO oxidation by TA, coupled with the back-reduction of TASO and its futile redox cycling with TA may help explain phenomena previously interpreted as “saturation toxicokinetics” in the in vivo metabolism and toxicity of TA and TASO. The improved understanding of the metabolism and covalent binding of TA and TASO facilitates the use of hepatocytes to prepare protein adducts for target protein identification

    Covalent Modification of Lipids and Proteins in Rat Hepatocytes, and In Vitro, by Thioacetamide Metabolites

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemical Research in Toxicology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/tx3001658Thioacetamide (TA) is a well-known hepatotoxin in rats. Acute doses cause centrilobular necrosis and hyperbilirubinemia while chronic administration leads to biliary hyperplasia and cholangiocarcinoma. Its acute toxicity requires its oxidation to a stable S-oxide (TASO) that is oxidized further to a highly reactive S,S-dioxide (TASO2). To explore possible parallels between the metabolism, covalent binding and toxicity of TA and thiobenzamide (TB) we exposed freshly isolated rat hepatocytes to [14C]-TASO or [13C2D3]-TASO. TLC analysis of the cellular lipids showed a single major spot of radioactivity that mass spectral analysis showed to consist of N-acetimidoyl PE lipids having the same side chain composition as the PE fraction from untreated cells; no carbons or hydrogens from TASO were incorporated into the fatty acyl chains. Many cellular proteins contained N-acetyl- or N-acetimidoyl lysine residues in a 3:1 ratio (details to be reported separately). We also oxidized TASO with hydrogen peroxide in the presence of dipalmitoyl phosphatidylenthanolamine (DPPE) or lysozyme. Lysozyme was covalently modified at five of its six lysine side chains; only acetamide-type adducts were formed. DPPE in liposomes also gave only amide-type adducts, even when the reaction was carried out in tetrahydrofuran with only 10% water added. The exclusive formation of N-acetimidoyl PE in hepatocytes means that the concentration or activity of water must be extremely low in the region where TASO2 is formed, whereas at least some of the TASO2 can hydrolyze to acetylsulfinic acid before it reacts with cellular proteins. The requirement for two sequential oxidations to produce a reactive metabolite is unusual, but it is even more unusual that a reactive metabolite would react with water to form a new compound that retains a high degree of chemical reactivity toward biological nucleophiles. The possible contribution of lipid modification to the hepatotoxicity of TA/TASO remains to be determined

    Identification of Protein Targets of Reactive Metabolites of Tienilic Acid in Human Hepatocytes

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemical Research in Toxicology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/tx300103jTienilic acid (TA) is a uricosuric diuretic that was withdrawn from the market only months after its introduction because of reports of serious incidents of drug-induced liver injury including some fatalities. Its hepatotoxicity is considered to be primarily immunoallergic in nature. Like other thiophene compounds, TA undergoes biotransformation to a S-oxide metabolite which then reacts covalently with cellular proteins. To identify protein targets of TA metabolites, we incubated [14C]-TA with human hepatocytes, separated cellular proteins by 2D gel electrophoresis, and analyzed proteins in 36 radioactive spots by tryptic digestion followed by LC-MS/MS. Thirty one spots contained at least one identifiable protein. Sixteen spots contained only one of 14 non-redundant proteins which were thus considered to be targets of TA metabolites. Six of the 14 were also found in other radioactive spots that contained from 1 to 3 additional proteins. Eight of the 14 had not been reported to be targets for any reactive metabolite other than TA. The other 15 spots each contained from 2–4 identifiable proteins, many of which are known targets of other chemically reactive metabolites, but since adducted peptides were not observed, the identity of the adducted protein(s) in these spots is ambiguous. Interestingly, all the radioactive spots corresponded to proteins of low abundance, while many highly abundant proteins in the mixture showed no radioactivity. Furthermore, of approximately 16 previously reported protein targets of TA in rat liver (Methogo, R., Dansette, P. and Klarskov, K. (2007) Int. J. Mass Spectrom., 268, 284–295), only one (fumarylacetoacetase) is among the 14 targets identified in this work. One reason for this difference may be statistical, given that each study identified a small number of targets from among thousands present in hepatocytes. Another may be the species difference (i.e. rat vs. human), and still another may be the method of detection of adducted proteins (i.e. Western blot vs. C-14). Knowledge of human target proteins is very limited. Of more than 350 known protein targets of reactive metabolites, only 42 are known from human and only 21 of these are known to be targets for more than one chemical. Nevertheless, the demonstration that human target proteins can be identified using isolated hepatocytes in vitro should enable the question of species differences to be addressed more fully in the future

    P A bI-OPEN SETS IN IDEAL BITOPOLOGICAL SPACES

    No full text
    Abstract: The aim of this article is to introduce and study the concept of bI-open sets with respect to an ideal in bitopological spaces and to investigate some properties. Moreover, the concept of bI-continuous functions have also been introduced

    Weakly b-open functions in bitopological spaces

    No full text
    Abstract: The aim of this paper is to introduce the notion of weakly b-open functions in bitopological spaces. Some properties of this functions are established and the relationships with some other types of spaces are also investigated

    Hydrophobic effects are dominant over secondary orbital interactions for a simple Diels-Alder reaction in salt solutions

    No full text
    The stereoselectivity ratios for a Diels-Alder reaction between cyclopentadiene with methyl trans-crotonate carried out in salt solutions demonstrate the dominance of hydrophobic effects over secondary orbital interactions
    corecore