4,999 research outputs found

    A Large-Scale CNN Ensemble for Medication Safety Analysis

    Full text link
    Revealing Adverse Drug Reactions (ADR) is an essential part of post-marketing drug surveillance, and data from health-related forums and medical communities can be of a great significance for estimating such effects. In this paper, we propose an end-to-end CNN-based method for predicting drug safety on user comments from healthcare discussion forums. We present an architecture that is based on a vast ensemble of CNNs with varied structural parameters, where the prediction is determined by the majority vote. To evaluate the performance of the proposed solution, we present a large-scale dataset collected from a medical website that consists of over 50 thousand reviews for more than 4000 drugs. The results demonstrate that our model significantly outperforms conventional approaches and predicts medicine safety with an accuracy of 87.17% for binary and 62.88% for multi-classification tasks

    Use of statistical outlier detection method in adaptive evolutionary algorithms

    Full text link
    In this paper, the issue of adapting probabilities for Evolutionary Algorithm (EA) search operators is revisited. A framework is devised for distinguishing between measurements of performance and the interpretation of those measurements for purposes of adaptation. Several examples of measurements and statistical interpretations are provided. Probability value adaptation is tested using an EA with 10 search operators against 10 test problems with results indicating that both the type of measurement and its statistical interpretation play significant roles in EA performance. We also find that selecting operators based on the prevalence of outliers rather than on average performance is able to provide considerable improvements to adaptive methods and soundly outperforms the non-adaptive case

    The Self-Organization of Interaction Networks for Nature-Inspired Optimization

    Full text link
    Over the last decade, significant progress has been made in understanding complex biological systems, however there have been few attempts at incorporating this knowledge into nature inspired optimization algorithms. In this paper, we present a first attempt at incorporating some of the basic structural properties of complex biological systems which are believed to be necessary preconditions for system qualities such as robustness. In particular, we focus on two important conditions missing in Evolutionary Algorithm populations; a self-organized definition of locality and interaction epistasis. We demonstrate that these two features, when combined, provide algorithm behaviors not observed in the canonical Evolutionary Algorithm or in Evolutionary Algorithms with structured populations such as the Cellular Genetic Algorithm. The most noticeable change in algorithm behavior is an unprecedented capacity for sustainable coexistence of genetically distinct individuals within a single population. This capacity for sustained genetic diversity is not imposed on the population but instead emerges as a natural consequence of the dynamics of the system

    Strategic Positioning in Tactical Scenario Planning

    Full text link
    Capability planning problems are pervasive throughout many areas of human interest with prominent examples found in defense and security. Planning provides a unique context for optimization that has not been explored in great detail and involves a number of interesting challenges which are distinct from traditional optimization research. Planning problems demand solutions that can satisfy a number of competing objectives on multiple scales related to robustness, adaptiveness, risk, etc. The scenario method is a key approach for planning. Scenarios can be defined for long-term as well as short-term plans. This paper introduces computational scenario-based planning problems and proposes ways to accommodate strategic positioning within the tactical planning domain. We demonstrate the methodology in a resource planning problem that is solved with a multi-objective evolutionary algorithm. Our discussion and results highlight the fact that scenario-based planning is naturally framed within a multi-objective setting. However, the conflicting objectives occur on different system levels rather than within a single system alone. This paper also contends that planning problems are of vital interest in many human endeavors and that Evolutionary Computation may be well positioned for this problem domain

    Schwinger-Boson Mean-Field Theory of Mixed-Spin Antiferromagnet L2BaNiO5L_2BaNiO_5

    Full text link
    The Schwinger-boson mean-field theory is used to study the three-dimensional antiferromagnetic ordering and excitations in compounds L2BaNiO5L_2BaNiO_5, a large family of quasi-one-dimensional mixed-spin antiferromagnet. To investigate magnetic properties of these compounds, we introduce a three-dimensional mixed-spin antiferromagnetic Heisenberg model based on experimental results for the crystal structure of L2BaNiO5L_2BaNiO_5. This model can explain the experimental discovery of coexistence of Haldane gap and antiferromagnetic long-range order below N\'{e}el temperature. Properties such as the low-lying excitations, magnetizations of NiNi and rare-earth ions, N\'{e}el temperatures of different compounds, and the behavior of Haldane gap below the N\'{e}el temperature are investigated within this model, and the results are in good agreement with neutron scattering experiments.Comment: 12 pages, 6 figure

    Credit Assignment in Adaptive Evolutionary Algorithms

    Get PDF
    In this paper, a new method for assigning credit to search\ud operators is presented. Starting with the principle of optimizing\ud search bias, search operators are selected based on an ability to\ud create solutions that are historically linked to future generations.\ud Using a novel framework for defining performance\ud measurements, distributing credit for performance, and the\ud statistical interpretation of this credit, a new adaptive method is\ud developed and shown to outperform a variety of adaptive and\ud non-adaptive competitors
    corecore