25,810 research outputs found

    Effects of New Gravitational Interactions on Neutrinoless Double Beta Decay

    Get PDF
    It has recently been proposed that violations of Lorentz invariance or violations of the equivalence principle can be constrained from the non-observation of neutrinoless double beta decay. We generalize this analysis to all possible new gravitational interactions and discuss briefly the constraints for different cases.Comment: 10 page

    Neutrinoless double beta decay with scalar bilinears

    Get PDF
    One possible probe to physics beyond the standard model is to look for scalar bilinears, which couple to two fermions of the standard model. We point out that the scalar bilinears allow new diagrams contributing to the neutrinoless double beta decay. The upper bound on the neutrinoless double beta decay lifetime would then give new constraints on the ratio of the masses of these scalars to their couplings to the fermions.Comment: 11 pages latex with 3 figure

    Quantum Phase Transition in Coupled Superconducting Quantum Dots Array with Charge Frustration

    Full text link
    We present the quantum phase transition in two capacitively coupled arrays of superconducting quantum dots (SQD). We consider the presence of gate voltage in each superconducting island. We show explicitly that the co-tunneling process involves with two coupled SQD arrays, near the maximum charge frustration line is not sufficient to explain the correct quantum phases with physically consistent phase boundaries. We consider another extra co-tunneling process along each chain to explain the correct quantum phases with physically consistent phase boundaries. There is no evidence of supersolid phase in our study. We use Bethe-ansatz and Abelian bosonization method to solve the problemComment: pages 4 +, comments are welcom

    Interacting electrons in polygonal quantum dots

    Get PDF
    The low-lying eigenstates of a system of two electrons confined within a two-dimensional quantum dot with a hard polygonal boundary are obtained by means of exact diagonalization. The transition from a weakly correlated charge distribution for small dots to a strongly correlated "Wigner molecule" for large dots is studied, and the behaviour at the crossover is determined. In sufficiently large dots, a recently proposed mapping to an effective charge-spin model is investigated, and is found to produce the correct ordering of the energy levels and to give a good first approximation to the size of the level spacings. We conclude that this approach is a valuable method to obtain the low energy spectrum of few-electron quantum dots

    Generalized tt-jj Model

    Full text link
    By parameterizing the t-j model we present a new electron correlation model with one free parameter for high-temperature superconductivity. This model is of SUq(1,2)SU_{q}(1,2) symmetry. The energy spectrums are shown to be modulated by the free parameter in the model. The solution and symmetric structures of the Hilbert space, as well as the Bethe ansatz approach are discussed for special cases.Comment: 13 page, Latex, to appear in J. Phys.
    • …
    corecore