25,230 research outputs found

    Band Gap Energy and Urbach Tail Studies of Amorphous SiOx and V2O5Thin Films

    Get PDF

    Critical current of a superconductor measured via injection of spin polarized carriers

    Full text link
    In this paper we report a direct evidence of the suppression of critical current due to pair-breaking in a superconducting micro-bridge when the measurement is carried out by injecting spin polarised carriers instead of normal electrons. A thin layer of La0.7Ca0.3MnO3 was used as the source of spin polarised carriers. The micro-bridge was formed on the DyBa2Cu3O7-d thin film by photo-lithographic techniques. The design of our spin-injection device allowed us to inject spin-polarised carriers from the La0.7Ca0.3MnO3 layer directly to the DyBa2Cu3O7- d micro-bridge (without any insulating buffer layer) making it possible to measure the critical current when polarised electrons alone are injected into the superconductor. Our results confirm the role of polarised carriers in breaking the Cooper pairs in the superconductor.Comment: 8 pages, 4 figure

    Unconventional magnetism in multivalent charge-ordered YbPtGe2_2 probed by 195^{195}Pt- and 171^{171}Yb-NMR

    Full text link
    Detailed 195^{195}Pt- and 171^{171}Yb nuclear magnetic resonance (NMR) studies on the heterogeneous mixed valence system YbPtGe2_2 are reported. The temperature dependence of the 195^{195}Pt-NMR shift 195K(T)^{195}K(T) indicates the opening of an unusual magnetic gap below 200\,K. 195K(T)^{195}K(T) was analyzed by a thermal activation model which yields an isotropic gap Δ/kB200\Delta/k_B \approx 200\,K. In contrast, the spin-lattice relaxation rate 195^{195}(1/T11/T_1) does not provide evidence for the gap. Therefore, an intermediate-valence picture is proposed while a Kondo-insulator scenario can be excluded. Moreover, 195^{195}(1/T11/T_1) follows a simple metallic behavior, similar to the reference compound YPtGe2_2. A well resolved NMR line with small shift is assigned to divalent 171^{171}Yb. This finding supports the proposed model with two sub-sets of Yb species (di- and trivalent) located on the Yb2 and Yb1 site of the YbPtGe2_2 lattice.Comment: Submitted in Physical Review B (Rapid Communication

    Character of Locally Inequivalent Classes of States and Entropy of Entanglement

    Full text link
    In this letter we have established the physical character of pure bipartite states with the same amount of entanglement in the same Schmidt rank that either they are local unitarily connected or they are incomparable. There exist infinite number of deterministically locally inequivalent classes of pure bipartite states in the same Schmidt rank (starting from three) having same amount of entanglement. Further, if there exists incomparable states with same entanglement in higher Schmidt ranks (greater than three), then they should differ in at least three Schmidt coefficients.Comment: 4 pages, revtex4, no figure, accepted in Physical Review A (rapid communications

    Spin rings in bi-stable planar semiconductor microcavities

    Full text link
    A unique feature of exciton-polaritons, inherited from their mixed light-matter origin, is the strongly spin-dependent polariton-polariton interaction, which has been predicted to result in the formation of spin rings in real space [Shelykh et al., Phys. Rev. Lett. 100, 116401 (2008)]. Here we experimentally demonstrate the spin bi-stability of exciton-polaritons in an InGaAs-based semiconductor microcavity under resonant optical pumping. We observe the formation of spin rings whose size can be finely controlled in a spatial scale down to the micrometer range, much smaller than the spot size. We additionally evaluate the sign and magnitude of the antiparallel polariton spin interaction constant.Comment: 5 pages, 4 figure
    corecore