28,242 research outputs found
Cosmology of the Next-to-Minimal Supersymmetric Standard Model
We discuss the domain wall problem in the Next-to-Minimal Supersymmetric
Standard Model, with particular attention to the usual solution of explicit
breaking of the discrete symmetry by non-renormalisable operators. This
``solution'' leads to a contradiction between the requirements of cosmology and
those of avoiding the destabilisation of the hierarchy.Comment: 6 pages LaTeX, needs sprocl.sty (included at end) Talk presented by
P.L. White at Valencia 9
Systematic study of Reynolds stress closure models in the computations of plane channel flows
The roles of pressure-strain and turbulent diffusion models in the numerical calculation of turbulent plane channel flows with second-moment closure models are investigated. Three turbulent diffusion and five pressure-strain models are utilized in the computations. The main characteristics of the mean flow and the turbulent fields are compared against experimental data. All the features of the mean flow are correctly predicted by all but one of the Reynolds stress closure models. The Reynolds stress anisotropies in the log layer are predicted to varying degrees of accuracy (good to fair) by the models. None of the models could predict correctly the extent of relaxation towards isotropy in the wake region near the center of the channel. Results from the directional numerical simulation are used to further clarify this behavior of the models
Centroids of Gamow-Teller transitions at finite temperature in fp-shell neutron-rich nuclei
The temperature dependence of the energy centroids and strength distributions
for Gamow-Teller (GT) excitations in several fp-shell nuclei is studied.
The quasiparticle random phase approximations (QRPA) is extended to describe GT
states at finite temperature. A shift to lower energies of the GT strength
is found, as compared to values obtained at zero temperature.Comment: 12 pages, contains 3 tables. E-mail: [email protected],
[email protected]
High-spin structure and Band Termination in Cd
Excited states of the neutron deficient Cd nucleus have been
investigated via the Ge(Cl, p3n) reaction at beam energy of 135
MeV by use of in-beam spectroscopic methods. Gamma rays depopulating the
excited states were detected using the Gammasphere spectrometer with high-fold
-ray coincidences. A quadrupole -ray coincidence analysis
() has been used to extend the known level scheme. The positive
parity levels have been established up to and
MeV. In addition to the observation of highly-fragmented level scheme belonging
to the positive-parity sequences at E 5 MeV, the termination of a
negative-parity sequence connected by transitions has been established at
and MeV. The experimental results
corresponding to both the positive- and negative-parity sequences have been
theoretically interpreted in the framework of the core particle coupling model.
Evidence is presented for a shape change from collective prolate to
non-collective oblate above the (8011 keV) level and for a
smooth termination of the negative-parity band.Comment: 19 pages, 8 figures. Submitted to Phys. Rev.
- …