12,919 research outputs found

    Understanding Nuclei in the upper sd - shell

    Full text link
    Nuclei in the upper-sdsd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A\simeq 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.Comment: 8 pages, 13 figures, submitted for publication in the Proceedings of "Frontiers in Gamma-Ray Spectroscopy 2012 (FIG12), held at New Delhi, March 5th - 7th, 2012, Organized by Inter University Accelerator Center, New Delhi, Indi

    New magic number for neutron rich Sn isotopes

    Full text link
    The variation of E(2+_1) of (134-140)Sn calculated with empirical SMPN interaction has striking similarity with that of experimental E(2+_1) of even-even (18-22)O and (42-48)Ca, showing clearly that N=84-88 spectra exhibit the effect of gradual filling up of \nu(2f_{7/2}) orbital which finally culminates in a new shell closure at N=90. Realistic two-body interaction CWG does not show this feature. Spin-tensor decomposition of SMPN and CWG interactions and variation of their components with valence neutron number reveals that the origin of the shell closure at 140Sn lies in the three body effects. Calculations with CWG3, which is obtained by including a simple three-body monopole term in the CWG interaction, predict decreasing E(2+_1) for (134-138)Sn and a shell closure at 140Sn.Comment: 4 pages, 5 figure

    Astrophysical Implication of Low E(2^+_1) in Neutron-rich Sn Isotopes

    Full text link
    The observation and prediction of unusually depressed first excited 2^+_1 states in even-A neutron - rich isotopes of semi-magic Sn above 132Sn provide motivations for reviewing the problems related to the nuclear astrophysics in general. In the present work, the beta-decay rates of the exotic even Sn isotopes (134,136Sn) above the 132Sn core have been calculated as a function of temperature (T). In order to get the necessary ft values, B(GT) values corresponding to allowed Gamow Teller (GT-) beta-decay have been theoretically calculated using shell model. The total decay rate shows decrease with increasing temperature as the ground state population is depleted and population of excited states with slower decay rates increases. The abundance at each Z value is inversely proportional to the decay constant of the waiting point nucleus for that particular Z. So the increase in half-life of isotopes of Sn, like 136Sn, might have substantial impact on the r-process nucleosynthesis.Comment: 4th International Workshop on Nuclear Fission and Fission Product Spectroscopy, CEA Cadarache, May 13 - 16, 2009, 4 pages, 2 figure

    Histone Hypervariants H2A.Z.1 and H2A.Z.2 Play Independent and Context-Specific Roles in Neuronal Activity-Induced Transcription of Arc/Arg3.1 and Other Immediate Early Genes.

    Get PDF
    The histone variant H2A.Z is an essential and conserved regulator of eukaryotic gene transcription. However, the exact role of this histone in the transcriptional process remains perplexing. In vertebrates, H2A.Z has two hypervariants, H2A.Z.1 and H2A.Z.2, that have almost identical sequences except for three amino acid residues. Due to such similarity, functional specificity of these hypervariants in neurobiological processes, if any, remain largely unknown. In this study with dissociated rat cortical neurons, we asked if H2A.Z hypervariants have distinct functions in regulating basal and activity-induced gene transcription. Hypervariant-specific RNAi and microarray analyses revealed that H2A.Z.1 and H2A.Z.2 regulate basal expression of largely nonoverlapping gene sets, including genes that code for several synaptic proteins. In response to neuronal activity, rapid transcription of our model gene Arc is impaired by depletion of H2A.Z.2, but not H2A.Z.1. This impairment is partially rescued by codepletion of the H2A.Z chaperone, ANP32E. In contrast, under a different context (after 48 h of tetrodotoxin, TTX), rapid transcription of Arc is impaired by depletion of either hypervariant. Such context-dependent roles of H2A.Z hypervariants, as revealed by our multiplexed gene expression assays, are also evident with several other immediate early genes, where regulatory roles of these hypervariants vary from gene to gene under different conditions. Together, our data suggest that H2A.Z hypervariants have context-specific roles that complement each other to mediate activity-induced neuronal gene transcription

    High-spin structure and Band Termination in 103^{103}Cd

    Full text link
    Excited states of the neutron deficient 103^{103}Cd nucleus have been investigated via the 72^{72}Ge(35^{35}Cl, p3n) reaction at beam energy of 135 MeV by use of in-beam spectroscopic methods. Gamma rays depopulating the excited states were detected using the Gammasphere spectrometer with high-fold γ\gamma-ray coincidences. A quadrupole γ\gamma-ray coincidence analysis (γ4\gamma^{4}) has been used to extend the known level scheme. The positive parity levels have been established up to J=35/2J = 35/2\hbar and Ex=7.071E_{x} = 7.071 MeV. In addition to the observation of highly-fragmented level scheme belonging to the positive-parity sequences at Ex_{x}\sim 5 MeV, the termination of a negative-parity sequence connected by E2E2 transitions has been established at J=47/2J = 47/2 \hbar and Ex=11.877E_{x} = 11.877 MeV. The experimental results corresponding to both the positive- and negative-parity sequences have been theoretically interpreted in the framework of the core particle coupling model. Evidence is presented for a shape change from collective prolate to non-collective oblate above the Jπ=39/2J^{\pi} = 39/2^{-} (8011 keV) level and for a smooth termination of the negative-parity band.Comment: 19 pages, 8 figures. Submitted to Phys. Rev.

    Importance of 1n1n-stripping process in the 6^{6}Li+159^{159}Tb reaction

    Full text link
    The inclusive cross sections of the α\alpha-particles produced in the reaction 6^{6}Li+159^{159}Tb have been measured at energies around the Coulomb barrier. The measured cross sections are found to be orders of magnitude larger than the calculated cross sections of 6^{6}Li breaking into α\alpha and dd fragments, thus indicating contributions from other processes. The experimental cross sections of 1n1n-stripping and 1n1n-pickup processes have been determined from an entirely different measurement, reported earlier. Apart from incomplete fusion and/ dd-transfer processes, the 1n1n-stripping process is found to be a significant contributor to the inclusive α\alpha-particle cross sections in this reaction
    corecore