51 research outputs found
Association study of genetic variation in DNA repair pathway genes and risk of basal cell carcinoma
DNA repair plays a critical role in protecting the genome from ultraviolet radiation and maintaining the genomic integrity of cells. Genetic variants in DNA repair-related genes can influence an individual's DNA repair capacity, which may be related to the risk of developing basal cell carcinoma (BCC). We comprehensively assessed the associations of 2,965 independent single-nucleotide polymorphisms (SNPs) across 165 DNA repair pathway genes with BCC risk in a genome-wide association meta-analysis totaling 17,187 BCC cases and 287,054 controls from two data sets. After multiple testing corrections, we identified three SNPs (rs2805831 upstream of XPA: OR = 0.93, P = 1.35 × 10-6 ; rs659857 in exon of MUS81: OR = 1.06, P = 3.09 × 10-6 and rs57343616 in 3' UTR of NABP2: OR = 1.11, P = 6.47 × 10-6 ) as significantly associated with BCC risk in meta-analysis, and all of them were nominally significant in both data sets. Furthermore, rs659857 [T] was significantly associated with decreased expression of MUS81 mRNA in the expression quantitative trait locus (eQTL) analysis. Our findings suggest that the inherited common variation in three DNA repair genes-XPA, MUS81 and NABP2-may be involved in the development of BCC. To our knowledge, our study is the first report thoroughly examining the effects of SNPs across DNA repair pathway genes on BCC risk based on a genome-wide association meta-analysis
TERT Promotes Epithelial Proliferation through Transcriptional Control of a Myc- and Wnt-Related Developmental Program
Telomerase serves a critical role in stem cell function and tissue homeostasis. This role depends on its ability to synthesize telomere repeats in a manner dependent on the reverse transcriptase (RT) function of its protein component telomerase RT (TERT), as well as on a novel pathway whose mechanism is poorly understood. Here, we use a TERT mutant lacking RT function (TERTci) to study the mechanism of TERT action in mammalian skin, an ideal tissue for studying progenitor cell biology. We show that TERTci retains the full activities of wild-type TERT in enhancing keratinocyte proliferation in skin and in activating resting hair follicle stem cells, which triggers initiation of a new hair follicle growth phase and promotes hair synthesis. To understand the nature of this RT-independent function for TERT, we studied the genome-wide transcriptional response to acute changes in TERT levels in mouse skin. We find that TERT facilitates activation of progenitor cells in the skin and hair follicle by triggering a rapid change in gene expression that significantly overlaps the program controlling natural hair follicle cycling in wild-type mice. Statistical comparisons to other microarray gene sets using pattern-matching algorithms revealed that the TERT transcriptional response strongly resembles those mediated by Myc and Wnt, two proteins intimately associated with stem cell function and cancer. These data show that TERT controls tissue progenitor cells via transcriptional regulation of a developmental program converging on the Myc and Wnt pathways
Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma
Cutaneous squamous cell carcinoma represents the second most common cutaneous malignancy, affecting 7–11% of Caucasians in the United States. The genetic determinants of susceptibility to cutaneous squamous cell carcinoma remain largely unknown. Here we report the results of a two-stage genome-wide association study of cutaneous squamous cell carcinoma, totalling 7,404 cases and 292,076 controls. Eleven loci reached genome-wide significance (P<5 × 10−8) including seven previously confirmed pigmentation-related loci: MC1R, ASIP, TYR, SLC45A2, OCA2, IRF4 and BNC2. We identify an additional four susceptibility loci: 11q23.3 CADM1, a metastasis suppressor gene involved in modifying tumour interaction with cell-mediated immunity; 2p22.3; 7p21.1 AHR, the dioxin receptor involved in anti-apoptotic pathways and melanoma progression; and 9q34.3 SEC16A, a putative oncogene with roles in secretion and cellular proliferation. These susceptibility loci provide deeper insight into the pathogenesis of squamous cell carcinoma
Genome-wide meta-analysis identifies eight new susceptibility loci for cutaneous squamous cell carcinoma
Cutaneous squamous cell carcinoma (SCC) is one of the most common cancers in the United States. Previous genome-wide association studies (GWAS) have identified 14 single nucleotide polymorphisms (SNPs) associated with cutaneous SCC. Here, we report the largest cutaneous SCC meta-analysis to date, representing six international cohorts and totaling 19,149 SCC cases and 680,049 controls. We discover eight novel loci associated with SCC, confirm all previously associated loci, and perform fine mapping of causal variants. The novel SNPs occur within skin-specific regulatory elements and implicate loci involved in cancer development, immune regulation, and keratinocyte differentiation in SCC susceptibility
Recommended from our members
IFNγ-Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment
Homeostatic programs balance immune protection and self-tolerance. Such mechanisms likely impact autoimmunity and tumor formation, respectively. How homeostasis is maintained and impacts tumor surveillance is unknown. Here, we find that different immune mononuclear phagocytes share a conserved steady-state program during differentiation and entry into healthy tissue. IFNγ is necessary and sufficient to induce this program, revealing a key instructive role. Remarkably, homeostatic and IFNγ-dependent programs enrich across primary human tumors, including melanoma, and stratify survival. Single-cell RNA sequencing (RNA-seq) reveals enrichment of homeostatic modules in monocytes and DCs from human metastatic melanoma. Suppressor-of-cytokine-2 (SOCS2) protein, a conserved program transcript, is expressed by mononuclear phagocytes infiltrating primary melanoma and is induced by IFNγ. SOCS2 limits adaptive anti-tumoral immunity and DC-based priming of T cells in vivo, indicating a critical regulatory role. These findings link immune homeostasis to key determinants of anti-tumoral immunity and escape, revealing co-opting of tissue-specific immune development in the tumor microenvironment. Keywords: dendritic cells; homeostasis; differentiation; IFNγ; tumor microenvironment; melanoma tolerance; immunotherapy; suppressor-of-cytokine-signaling 2 (SOCS2); tissue mononuclear phagocyte
Phenotypic heterogeneity of neurofibromatosis type 1 in a large international registry
Neurofibromatosis type 1 (NF1) is a rare genetic disorder, characterized by the development of benign and malignant nerve tumors. Although all individuals with NF1 harbor genetic alterations in the same gene, the clinical manifestations of NF1 are extremely heterogeneous even among individuals who carry identical genetic defects. In order to deepen the understanding of phenotypic manifestations in NF1, we comprehensively characterized the prevalence of 18 phenotypic traits in 2051 adults with NF1 from the Children’s Tumor Foundation’s NF1 registry. We further investigated the coassociation of traits and found positive correlations between spinal neurofibromas and pain, spinal neurofibromas and scoliosis, spinal neurofibromas and optic gliomas, and optic gliomas and sphenoid wing dysplasia. Furthermore, with increasing numbers of cutaneous neurofibromas, the odds ratio of malignant peripheral nerve sheath tumor increased. Phenotypic clustering revealed 6 phenotypic patient cluster subtypes: mild, freckling predominant, neurofibroma predominant, skeletal predominant, late-onset neural severe, and early-onset neural severe, highlighting potential phenotypic subtypes within NF1. Together, our results support potential shared molecular pathogenesis for certain clinical manifestations and illustrate the utility of disease registries for understanding rare diseases
- …