436 research outputs found
Impact of Electrostatic Forces in Contact Mode Scanning Force Microscopy
In this contribution we address the question to what extent surface
charges affect contact-mode scanning force microscopy measurements. % We
therefore designed samples where we could generate localized electric field
distributions near the surface as and when required. % We performed a series of
experiments where we varied the load of the tip, the stiffness of the
cantilever and the hardness of the sample surface. % It turned out that only
for soft cantilevers could an electrostatic interaction between tip and surface
charges be detected, irrespective of the surface properties, i.\,e. basically
regardless its hardness. % We explain these results through a model based on
the alteration of the tip-sample potential by the additional electric field
between charged tip and surface charges
Imminent Phenomenology of a Minimal Gauge-Mediated Model
We calculate the inclusive branching ratio for B--> X_s gamma, the inclusive branching ratios and asymmetries for B--> X_s l+ l- and the anomalous magnetic moment g-2 of the muon, within a minimal gauge-mediated SUSY-breaking model which naturally generates a large ratio tan(beta) of Higgs field vacuum expectation values. These predictions are highly correlated with each other, depending on only two fundamental parameters: the superpartner mass scale and the logarithm of a common messenger mass. The predictions for B--> X_s gamma decay and g-2 are in somewhat better agreement with current experiments than the standard model, but a much sharper comparison will soon be possible using new measurements now in progress or under analysis. Moreover we predict large deviations in B--> X_s e+ e- and B--> X_s mu+ mu- asymmetries, and somewhat smaller ones in B--> X_s e+ e- and B--> X_s tau+ tau- branching ratios, which will be detectable in hadronic colliders
Controlling the quality factor of a tuning-fork resonance between 9 K and 300 K for scanning-probe microscopy
We study the dynamic response of a mechanical quartz tuning fork in the
temperature range from 9 K to 300 K. Since the quality factor Q of the
resonance strongly depends on temperature, we implement a procedure to control
the quality factor of the resonance. We show that we are able to dynamically
change the quality factor and keep it constant over the whole temperature
range. This procedure is suitable for applications in scanning probe
microscopy.Comment: 5 pages, 6 figure
Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall
Surprising asymmetry in the local electromechanical response across a single
antiparallel ferroelectric domain wall is reported. Piezoelectric force
microscopy is used to investigate both the in-plane and out-of- plane
electromechanical signals around domain walls in congruent and
near-stoichiometric lithium niobate. The observed asymmetry is shown to have a
strong correlation to crystal stoichiometry, suggesting defect-domain wall
interactions. A defect-dipole model is proposed. Finite element method is used
to simulate the electromechanical processes at the wall and reconstruct the
images. For the near-stoichiometric composition, good agreement is found in
both form and magnitude. Some discrepancy remains between the experimental and
modeling widths of the imaged effects across a wall. This is analyzed from the
perspective of possible electrostatic contributions to the imaging process, as
well as local changes in the material properties in the vicinity of the wall
Local probing of ionic diffusion by electrochemical strain microscopy: spatial resolution and signal formation mechanisms
Electrochemical insertion-deintercalation reactions are typically associated
with significant change of molar volume of the host compound. This strong
coupling between ionic currents and strains underpins image formation
mechanisms in electrochemical strain microscopy (ESM), and allows exploring the
tip-induced electrochemical processes locally. Here we analyze the signal
formation mechanism in ESM, and develop the analytical description of operation
in frequency and time domains. The ESM spectroscopic modes are compared to
classical electrochemical methods including potentiostatic and galvanostatic
intermittent titration (PITT and GITT), and electrochemical impedance
spectroscopy (EIS). This analysis illustrates the feasibility of spatially
resolved studies of Li-ion dynamics on the sub-10 nanometer level using
electromechanical detection.Comment: 49 pages, 17 figures, 4 tables, 3 appendices, to be submitted to J.
Appl. Phys
Dynamic Behavior in Piezoresponse Force Microscopy
Frequency dependent dynamic behavior in Piezoresponse Force Microscopy (PFM)
implemented on a beam-deflection atomic force microscope (AFM) is analyzed
using a combination of modeling and experimental measurements. The PFM signal
comprises contributions from local electrostatic forces acting on the tip,
distributed forces acting on the cantilever, and three components of the
electromechanical response vector. These interactions result in the bending and
torsion of the cantilever, detected as vertical and lateral PFM signals. The
relative magnitudes of these contributions depend on geometric parameters of
the system, the stiffness and frictional forces of tip-surface junction, and
operation frequencies. The dynamic signal formation mechanism in PFM is
analyzed and conditions for optimal PFM imaging are formulated. The
experimental approach for probing cantilever dynamics using frequency-bias
spectroscopy and deconvolution of electromechanical and electrostatic contrast
is implemented.Comment: 65 pages, 15 figures, high quality version available upon reques
Facing erythrocytosis: Results of an international physician survey.
We observed a good agreement among hematologists regarding the diagnostic procedures and a widespread awareness regarding the importance of the new 2016 WHO criteria and bone marrow his-tology. On the other side, we observed a marked heterogeneity in treatment practice, regarding both the Hct threshold and the use of anti-platelet agents
Robust plasmon waveguides in strongly-interacting nanowire arrays
Arrays of parallel metallic nanowires are shown to provide a tunable, robust,
and versatile platform for plasmon interconnects, including high-curvature
turns with minimum signal loss. The proposed guiding mechanism relies on gap
plasmons existing in the region between adjacent nanowires of dimers and
multi-wire arrays. We focus on square and circular silver nanowires in silica,
for which excellent agreement between both boundary element method and multiple
multipolar expansion calculations is obtained. Our work provides the tools for
designing plasmon-based interconnects and achieving high degree of integration
with minimum cross talk between adjacent plasmon guides.Comment: 4 pages, 5 figure
Centrifugal separation and equilibration dynamics in an electron-antiproton plasma
Charges in cold, multiple-species, non-neutral plasmas separate radially by
mass, forming centrifugally-separated states. Here, we report the first
detailed measurements of such states in an electron-antiproton plasma, and the
first observations of the separation dynamics in any centrifugally-separated
system. While the observed equilibrium states are expected and in agreement
with theory, the equilibration time is approximately constant over a wide range
of parameters, a surprising and as yet unexplained result. Electron-antiproton
plasmas play a crucial role in antihydrogen trapping experiments
- …