1 research outputs found

    Dynamics of alternative modes of RNA replication for positive-sense RNA viruses

    Full text link
    [EN] We propose and study nonlinear mathematical models describing the intracellular time dynamics of viral RNA accumulation for positive-sense single-stranded RNA viruses. Our models consider different replication modes ranging between two extremes represented by the geometric replication (GR) and the linear stamping machine replication (SMR). We first analyse a model that quantitatively reproduced experimental data for the accumulation dynamics of both polarities of turnip mosaic potyvirus RNAs. We identify a non-degenerate transcritical bifurcation governing the extinction of both strands depending on three key parameters: the mode of replication (a), the replication rate (r) and the degradation rate (d) of viral strands. Our results indicate that the bifurcation associated with a generically takes place when the replication mode is closer to the SMR, thus suggesting that GR may provide viral strands with an increased robustness against degradation. This transcritical bifurcation, which is responsible for the switching from an active to an absorbing regime, suggests a smooth (i.e. secondorder), absorbing-state phase transition. Finally, we also analyse a simplified model that only incorporates asymmetry in replication tied to differential replication modes.This work was funded by the Human Frontier Science Program Organization grant RGP12/2008, by the Spanish Ministerio de Ciencia e Innovacion grants BIO2008-01986 (J.A.D.) and BFU2009-06993 (S.F.E.) and by the Santa Fe Institute. F. M. is the recipient of a predoctoral fellowship from Universitat Politecnica de Valencia. We also thank the hospitality and support of the Kavli Institute for Theoretical Physics (University of California at Santa Barbara), where part of this work was developed (grant NSF PHY05-51164).Sardanyes Cayuela, J.; Martinez, F.; Daros Arnau, JA.; Elena Fito, SF. (2012). Dynamics of alternative modes of RNA replication for positive-sense RNA viruses. Journal of the Royal Society. Interface. 9(69):768-776. https://doi.org/10.1098/rsif.2011.0471S768776969Endy, D., Kong, D., & Yin, J. (1997). Intracellular kinetics of a growing virus: A genetically structured simulation for bacteriophage T7. Biotechnology and Bioengineering, 55(2), 375-389. doi:10.1002/(sici)1097-0290(19970720)55:23.0.co;2-gYou, L., Suthers, P. F., & Yin, J. (2002). Effects of Escherichia coli Physiology on Growth of Phage T7 In Vivo and In Silico. Journal of Bacteriology, 184(7), 1888-1894. doi:10.1128/jb.184.7.1888-1894.2002Reddy, B., & Yin, J. (1999). Quantitative Intracellular Kinetics of HIV Type 1. AIDS Research and Human Retroviruses, 15(3), 273-283. doi:10.1089/088922299311457Dahari, H., Ribeiro, R. M., Rice, C. M., & Perelson, A. S. (2006). Mathematical Modeling of Subgenomic Hepatitis C Virus Replication in Huh-7 Cells. Journal of Virology, 81(2), 750-760. doi:10.1128/jvi.01304-06Sidorenko, Y., & Reichl, U. (2004). Structured model of influenza virus replication in MDCK cells. Biotechnology and Bioengineering, 88(1), 1-14. doi:10.1002/bit.20096Lim, K., Lang, T., Lam, V., & Yin, J. (2006). Model-Based Design of Growth-Attenuated Viruses. PLoS Computational Biology, 2(9), e116. doi:10.1371/journal.pcbi.0020116Eigen, M., McCaskill, J., & Schuster, P. (2007). The Molecular Quasi-Species. Advances in Chemical Physics, 149-263. doi:10.1002/9780470141243.ch4Krakauer, D. C., & Komarova, N. L. (2003). Levels of selection in positive-strand virus dynamics. Journal of Evolutionary Biology, 16(1), 64-73. doi:10.1046/j.1420-9101.2003.00481.xSRIVASTAVA, R., YOU, L., SUMMERS, J., & YIN, J. (2002). Stochastic vs. Deterministic Modeling of Intracellular Viral Kinetics. Journal of Theoretical Biology, 218(3), 309-321. doi:10.1006/jtbi.2002.3078Zhdanov, V. P. (2004). Bifurcation in a generic model of intracellular viral kinetics. Journal of Physics A: Mathematical and General, 37(5), L63-L66. doi:10.1088/0305-4470/37/5/l03Domingo, E., Sabo, D., Taniguchi, T., & Weissmann, C. (1978). Nucleotide sequence heterogeneity of an RNA phage population. Cell, 13(4), 735-744. doi:10.1016/0092-8674(78)90223-4Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral Mutation Rates. Journal of Virology, 84(19), 9733-9748. doi:10.1128/jvi.00694-10MANRUBIA, S., & LAZARO, E. (2006). Viral evolution. Physics of Life Reviews, 3(2), 65-92. doi:10.1016/j.plrev.2005.11.002Sardanyes, J., Sole, R. V., & Elena, S. F. (2009). Replication Mode and Landscape Topology Differentially Affect RNA Virus Mutational Load and Robustness. Journal of Virology, 83(23), 12579-12589. doi:10.1128/jvi.00767-09Thébaud, G., Chadœuf, J., Morelli, M. J., McCauley, J. W., & Haydon, D. T. (2009). The relationship between mutation frequency and replication strategy in positive-sense single-stranded RNA viruses. Proceedings of the Royal Society B: Biological Sciences, 277(1682), 809-817. doi:10.1098/rspb.2009.1247Martínez, F., Sardanyés, J., Elena, S. F., & Daròs, J.-A. (2011). Dynamics of a Plant RNA Virus Intracellular Accumulation: Stamping Machine vs. Geometric Replication. Genetics, 188(3), 637-646. doi:10.1534/genetics.111.129114Denhardt, D. T., & Silver, R. B. (1966). An analysis of the clone size distribution of ΦX174 mutants and recombinants. Virology, 30(1), 10-19. doi:10.1016/s0042-6822(66)81004-8Luria, S. E. (1951). THE FREQUENCY DISTRIBUTION OF SPONTANEOUS BACTERIOPHAGE MUTANTS AS EVIDENCE FOR THE EXPONENTIAL RATE OF PHAGE REPRODUCTION. Cold Spring Harbor Symposia on Quantitative Biology, 16(0), 463-470. doi:10.1101/sqb.1951.016.01.033Chao, L., Rang, C. U., & Wong, L. E. (2002). Distribution of Spontaneous Mutants and Inferences about the Replication Mode of the RNA Bacteriophage  6. Journal of Virology, 76(7), 3276-3281. doi:10.1128/jvi.76.7.3276-3281.2002Marro, J., & Dickman, R. (1999). Nonequilibrium Phase Transitions in Lattice Models. doi:10.1017/cbo9780511524288Elena, S. F., Carrasco, P., Daròs, J.-A., & Sanjuán, R. (2006). Mechanisms of genetic robustness in RNA viruses. EMBO reports, 7(2), 168-173. doi:10.1038/sj.embor.7400636Jockusch, H., Wiegand, C., Mersch, B., & Rajes, D. (2001). Mutants ofTobacco mosaic viruswith Temperature-Sensitive Coat Proteins Induce Heat Shock Response in Tobacco Leaves. Molecular Plant-Microbe Interactions, 14(7), 914-917. doi:10.1094/mpmi.2001.14.7.914Tarazona, P. (1992). Error thresholds for molecular quasispecies as phase transitions: From simple landscapes to spin-glass models. Physical Review A, 45(8), 6038-6050. doi:10.1103/physreva.45.6038Saakian, D. B., Biebricher, C. K., & Hu, C.-K. (2009). Phase diagram for the Eigen quasispecies theory with a truncated fitness landscape. Physical Review E, 79(4). doi:10.1103/physreve.79.041905Sardanyés, J., & Elena, S. F. (2010). Error threshold in RNA quasispecies models with complementation. Journal of Theoretical Biology, 265(3), 278-286. doi:10.1016/j.jtbi.2010.05.018Rodrigo, G., Carrera, J., Jaramillo, A., & Elena, S. F. (2010). Optimal viral strategies for bypassing RNA silencing. Journal of The Royal Society Interface, 8(55), 257-268. doi:10.1098/rsif.2010.026
    corecore