61 research outputs found

    Pro-oxidant effects of Verbascoside, a bioactive compound from olive oil mill wastewater, on in vitro developmental potential of ovine prepubertal oocytes and bioenergetic/oxidative stress parameters of fresh and vitrified oocytes

    Get PDF
    Verbascoside (VB) is a bioactive polyphenol from olive oil mill wastewater with known antioxidant activity. Oxidative stress is an emerging problem in assisted reproductive technology (ART). Juvenile ART is a promising topic because, in farm animals, it reduces the generation gap and, in human reproductive medicine, it helps to overcome premature ovarian failure. The aim of this study was to test the effects of VB on the developmental competence of ovine prepubertal oocytes and the bioenergetic/oxidative stress status of fresh and vitrified oocytes. In fresh oocytes, VB exerted prooxidant short-term effects, that is, catalase activity increase and uncoupled increases of mitochondria and reactive oxygen species (ROS) fluorescence signals, and long-term effects, that is, reduced blastocyst formation rate. In vitrified oocytes, VB increased ROS levels. Prooxidant VB effects in ovine prepubertal oocytes could be related to higher VB accumulation, which was found as almost one thousand times higher than that reported in other cell systems in previous studies. Also, long exposure times of oocytes to VB, throughout the duration of in vitro maturation culture, may have contributed to significant increase of oocyte oxidation. Further studies are needed to identify lower concentrations and/or shorter exposure times to figure out VB antioxidant effects in juvenile ARTs

    Breast tumor characteristics of BRCA1 and BRCA2 gene mutation carriers on MRI

    Get PDF
    The appearance of malignant lesions in BRCA1 and BRCA2 mutation carriers (BRCA-MCs) on mammography and magnetic resonance imaging (MRI) was evaluated. Thus, 29 BRCA-MCs with breast cancer were retrospectively evaluated and the results compared with an age, tumor size and tumor type matched control group of 29 sporadic breast cancer cases. Detection rates on both modalities were evaluated. Tumors were analyzed on morphology, density (mammography), enhancement pattern and kinetics (MRI). Overall detection was significantly better with MRI than with mammography (55/58 vs 44/57, P = 0.021). On mammography, lesions in the BRCA-MC group were significantly more described as rounded (12//19 vs 3/13, P = 0.036) and with sharp margins (9/19 vs 1/13, P = 0.024). On MRI lesions in the BRCA-MC group were significantly more described as rounded (16/27 vs 7/28, P = 0.010), with sharp margins (20/27 vs 7/28, P < 0.001) and with rim enhancement (7/27 vs 1/28, P = 0.025). No significant difference was found for enhancement kinetics (P = 0.667). Malignant lesions in BRCA-MC frequently have morphological characteristics commonly seen in benign lesions, like a rounded shape or sharp margins. This applies for both mammography and MRI. However the possibility of MRI to evaluate the enhancement pattern and kinetics enables the detection of characteristics suggestive for a malignancy

    Breast MRI: guidelines from the European Society of Breast Imaging

    Get PDF
    The aim of breast MRI is to obtain a reliable evaluation of any lesion within the breast. It is currently always used as an adjunct to the standard diagnostic procedures of the breast, i.e., clinical examination, mammography and ultrasound. Whereas the sensitivity of breast MRI is usually very high, specificity—as in all breast imaging modalities—depends on many factors such as reader expertise, use of adequate techniques and composition of the patient cohorts. Since breast MRI will always yield MR-only visible questionable lesions that require an MR-guided intervention for clarification, MRI should only be offered by institutions that can also offer a MRI-guided breast biopsy or that are in close contact with a site that can perform this type of biopsy for them. Radiologists involved in breast imaging should ensure that they have a thorough knowledge of the MRI techniques that are necessary for breast imaging, that they know how to evaluate a breast MRI using the ACR BI-RADS MRI lexicon, and most important, when to perform breast MRI. This manuscript provides guidelines on the current best practice for the use of breast MRI, and the methods to be used, from the European Society of Breast Imaging (EUSOBI)

    PINK1 Defect Causes Mitochondrial Dysfunction, Proteasomal Deficit and α-Synuclein Aggregation in Cell Culture Models of Parkinson's Disease

    Get PDF
    Mutations in PTEN induced kinase 1 (PINK1), a mitochondrial Ser/Thr kinase, cause an autosomal recessive form of Parkinson's disease (PD), PARK6. Here, we report that PINK1 exists as a dimer in mitochondrial protein complexes that co-migrate with respiratory chain complexes in sucrose gradients. PARK6 related mutations do not affect this dimerization and its associated complexes. Using in vitro cell culture systems, we found that mutant PINK1 or PINK1 knock-down caused deficits in mitochondrial respiration and ATP synthesis. Furthermore, proteasome function is impaired with a loss of PINK1. Importantly, these deficits are accompanied by increased α-synclein aggregation. Our results indicate that it will be important to delineate the relationship between mitochondrial functional deficits, proteasome dysfunction and α-synclein aggregation

    The hUPF1-NMD factor controls the cellular transcript levels of different genes of complex I of the respiratory chain.

    No full text
    In this study the impact of hUPF1 and hUPF2 knockdown on alternative splicing (AS) isoforms of different genes encoding subunits of respiratory chain complex I and complex IV is described. As expected, loss of both hUPF1 and hUPF2 led to impairment of nonsense-mediated mRNA decay (NMD) and accumulation of PTC-containing NMD substrates generated by both complex I and complex IV genes. The levels of some complex I splice variants, which did not contain PTC as well as the level of some complex I canonical transcripts were, however, affected only by hUPF1 knockdown. This finding confirms that NMD plays a role in the maintenance of the transcriptome integrity and reveals a specific impact of hUPF1 on the regulation of complex I genes

    The endocannabinoid 2-arachidonoylglicerol decreases calcium induced cytochrome c release from liver mitochondria

    No full text
    2-Arachidonoylglicerol (2-AG) is an endocannabinoid that mimics the pharmacological effects of Δ⁹ tetrahydrocannabinol, the psychoactive component of the plant Cannabis sativa. It is present in many mammalian tissues, such as brain, liver, spleen, heart and kidney, where it exerts different biological effects either receptor mediated or independently of receptor activation. This work analyzes the effects of 2-AG on liver mitochondrial functions. It is shown that 2-AG causes a relevant decrease of calcium induced cyclosporine A sensitive cytochrome c release from mitochondria, a process representing an early event of the apoptotic program. Cyclosporin sensitive matrix swelling and ROS production measured under the same conditions are, on the contrary, almost unaffected or even enhanced, respectively, by 2-AG. Furthemore, 2-AG is found to stimulate resting state succinate oxidase activity and to inhibit oligomycin sensitive F₀F₁ ATP synthase activity. All these effects are apparently associated with 2-AG dependent alteration in the fluidity of the mitochondrial membranes, which was measured as generalized polarization of laurdan fluorescenc

    Complex I and the cAMP cascade in human physiopathology

    No full text
    A cAMP-dependent protein kinase (PKA) is localized in mammalian mitochondria with the catalytic site at the matrix side of the membrane where it phosphorylates a number of proteins. One of these is the 18 kDa(IP) subunit of the mammalian complex I of the respiratory chain, encoded by the nuclear NDUFS4 gene. Mitochondria have a Ca2+-inhibited phosphatase, which dephosphorylates the 18 kDa phosphoprotein of complex I. In fibroblast and myoblast cultures cAMP-dependent phosphorylation of the 18 kDa protein is associated with stimulation of complex I and overall respiratory activity with NAD-linked substrates. Mutations in the human NDUFS4 gene have been found, which in the homozygous state are associated with deficiency of complex I and fatal neurological syndrome
    corecore