36 research outputs found

    Surveillance Study of Hepatitis E Virus (HEV) in Domestic and Wild Ruminants in Northwestern Italy

    Get PDF
    In industrialized countries, increasing autochthonous infections of hepatitis E virus (HEV) are caused by zoonotic transmission of genotypes (Gts) 3 and 4, mainly through consumption of contaminated raw or undercooked pork meat. Although swine and wild boar are recognized as the main reservoir for Gt3 and Gt4, accumulating evidence indicates that other animal species, including domestic and wild ruminants, may harbor HEV. Herein, we screened molecularly and serologically serum and fecal samples from two domestic and four wild ruminant species collected in Valle d'Aosta and Piemonte regions (northwestern Italy. HEV antibodies were found in sheep (21.6%), goats (11.4%), red deer (2.6%), roe deer (3.1%), and in Alpine ibex (6.3%). Molecular screening was performed using different primer sets targeting highly conserved regions of hepeviruses and HEV RNA, although at low viral loads, was detected in four fecal specimens (3.0%, 4/134) collected from two HEV seropositive sheep herds. Taken together, the data obtained document the circulation of HEV in the geographical area assessed both in wild and domestic ruminants, but with the highest seroprevalence in sheep and goats. Consistently with results from other studies conducted in southern Italy, circulation of HEV among small domestic ruminants seems to occur more frequently than expected

    Seroprevalence for norovirus genogroups GII and GIV in captive non-human primates

    Get PDF
    Noroviruses (NoVs) are a major cause of epidemic gastroenteritis in children and adults. Several pieces of evidence suggest that viruses genetically and antigenically closely related to human NoVs might infect animals, raising public health concerns about potential cross-species transmission. The natural susceptibility of non-human primates (NPHs) to human NoV infections has already been reported, but a limited amount of data is currently available. In order to start filling this gap, we screened a total of 86 serum samples of seven different species of NPHs housed at the Zoological Garden (Bioparco) of Rome (Italy), collected between 2001 and 2017, using an enzyme-linked immunosorbent assay (ELISA) based on virus-like particles (VLPs) of human GII.4 and GIV.1 NoVs. Antibodies specific for both genotypes were detected with an overall prevalence of 32.6%. In detail, IgG antibodies against GII.4 NoVs were found in 18 Japanese macaques (29.0%, 18/62), a mandrill (10.0%, 1/10), a white-crowned mangabey (16.6%, 1/6) and in an orangutan (33.3%, 1/3). Twelve macaques (19.3%, 12/62), five mandrills (50.0%, 5/10), two chimpanzees (100%, 2/2) and a white-crowned mangabey (16.6%, 1/6) showed antibodies for GIV.1 NoVs. The findings of this study confirm the natural susceptibility of captive NHPs to GII NoV infections. In addition, IgG antibodies against GIV.1 were detected, suggesting that NHPs are exposed to GIV NoVs or to antigenically related NoV strains

    Molecular Identification and Characterization of a Genotype 3 Hepatitis E Virus (HEV) Strain Detected in a Wolf Faecal Sample, Italy

    No full text
    Hepatitis E virus (HEV) infection is a major health problem worldwide. In developed countries, zoonotic transmission of HEV genotypes (Gt) 3 and 4 is caused by the ingestion of raw or undercooked meat of infected pigs and wild boars, the main reservoirs of HEV. However, additional animals may harbour HEV or HEV-related strains, including carnivores. In this study, we investigated the molecular epidemiology of orthohepeviruses in wild canids by screening a total of 136 archival faecal samples, collected from wolves (42) and red foxes (94) in Northwestern Italy. Orthohepevirus RNA was identified in a faecal specimen, collected from a wolf carcass in the province of La Spezia (Liguria Region, Italy). The nearly full-length (7212 nucleotides) genome of the strain HEV/81236/Wolf/2019/ITA (GenBank accession no. MZ463196) was determined by combining a sequence-independent single-primer amplification (SISPA) approach with the Oxford Nanopore Technologies sequencing platform. Upon phylogenetic analysis, the HEV detected in wolf was segregated into clade HEV-3.1, displaying the highest nucleotide (nt) identity (89.0–93.3%) to Gt3 strains belonging to subtype c. Interestingly, the wolf faecal sample also contained porcine astrovirus sequences, endorsing the hypothesis of a dietary origin of the HEV strain due to preying habits

    First molecular evidence of kobuviruses in goats in Italy

    No full text
    By screening 139 rectal swabs collected from either asymptomatic or diarrhoeic goats in Italy, we identified kobuvirus RNA in eight samples (5.8 %). Higher positivity rates were observed in diarrhoeic goats (6.5 %, 3/46) than in asymptomatic animals (5.4 %, 5/93), although the difference was not statistically significant. Based on the analysis of a portion of the 3D gene, four strains were found to share the highest nucleotide (nt) sequence identity with bovine kobuviruses (95.0-98.0 %), which had been detected previously in calves in the UK and Korea. Interestingly, two strains were genetically related to the newly discovered caprine kobuviruses (83.0-97.0 % nt sequence identity), which had been identified in black goats in Korea and in roe deer in Italy. Taken together, these findings demonstrate that kobuviruses are common enteric viruses of goats, although their clinical relevance remains to be investigated

    Emerging Respiratory Viruses of Cats

    No full text
    In recent years, advances in diagnostics and deep sequencing technologies have led to the identification and characterization of novel viruses in cats as protoparviruses and chaphamaparvoviruses, unveiling the diversity of the feline virome in the respiratory tract. Observational, epidemiological and experimental data are necessary to demonstrate firmly if some viruses are able to cause disease, as this information may be confounded by virus- or host-related factors. Also, in recent years, researchers were able to monitor multiple examples of transmission to felids of viruses with high pathogenic potential, such as the influenza virus strains H5N1, H1N1, H7N2, H5N6 and H3N2, and in the late 2019, the human hypervirulent coronavirus SARS-CoV-2. These findings suggest that the study of viral infections always requires a multi-disciplinary approach inspired by the One Health vision. By reviewing the literature, we provide herewith an update on the emerging viruses identified in cats and their potential association with respiratory disease

    Detection and characterization of bopiviruses in domestic and wild ruminants

    No full text
    Highly divergent picornaviruses (PVs) classified in the genus Bopivirus have been recently discovered on faecal samples from sheep and goats in Hungary and from fallow and red deer in Australia. In this study, we investigated the epidemiology of these novel viruses in domestic and wild ruminants from Northwestern Italian Alps by testing archival faecal samples collected from 128 sheep, 167 goats, 61 red deer (Cervus elaphus), 77 roe deer (Capreolus capreolus), 43 chamois (Rupicapra rupicapra) and 32 Alpine ibex (Capra ibex). Bopivirus RNA was detected in a total of 19 animals, including 14 sheep (10.9%), 2 red deer (3.3%), 1 roe deer (1.3%), 1 chamois (2.3 %) and 1 Alpine ibex (3.3 %), but not in goats. Upon sequence analysis of the 3D(RdRp) region, the sequences generated from chamois, roe deer, Alpine ibex and ovine faecal samples showed the highest nucleotide identity (96.8-100%) to bopiviruses detected in goats and sheep from Hungarian farms, whereas strains found in red deer displayed the closest relatedness (90.8%-91.2%) to bopiviruses identified in fallow and red deer in Australia. The nearly complete genome sequence of strains 12/2020/ITA (ON497046) and 14-73/2020/ITA (ON497047) detected in an Alpine ibex and in a sheep, respectively, was determined by combining a modified 3'-RACE protocol with Oxford Nanopore Technologies sequencing platform. On phylogenetic analysis based on the complete polyprotein, both strains segregated into the candidate species Bopivirus B along with ovine and caprine strains detected in Hungary (90.0-94.6% nucleotide and 94.6-98.0% amino acid identities). The findings of this study expand the host range of these novel viruses and hint to a possible virus circulation between domestic ruminants and wild animals

    Exploring the Enteric Virome of Cats with Acute Gastroenteritis

    No full text
    Viruses are a major cause of acute gastroenteritis (AGE) in cats, chiefly in younger animals. Enteric specimens collected from 29 cats with acute enteritis and 33 non-diarrhoeic cats were screened in PCRs and reverse transcription (RT) PCR for a large panel of enteric viruses, including also orphan viruses of recent identification. At least one viral species, including feline panleukopenia virus (FPV), feline enteric coronavirus (FCoV), feline chaphamaparvovirus, calicivirus (vesivirus and novovirus), feline kobuvirus, feline sakobuvirus A and Lyon IARC polyomaviruses, was detected in 66.1% of the samples.. Co-infections were mainly accounted for by FPV and FCoV and were detected in 24.2% of the samples. The virome composition was further assessed in eight diarrhoeic samples, through the construction of sequencing libraries using a sequence-independent single-primer amplification (SISPA) protocol. The libraries were sequenced on Oxford Nanopore Technologies sequencing platform. A total of 41 contigs (>100 nt) were detected from seven viral families infecting mammals, included Parvoviridae, Caliciviridae, Picornaviridae, Polyomaviridae, Anelloviridae, Papillomaviridae and Paramyxoviridae, revealing a broad variety in the composition of the feline enteric virome

    Detection of hepatitis E virus (HEV) in goats

    No full text
    Hepatitis E virus (HEV) is a major cause of acute hepatitis worldwide. Genotypes 1 and 2 are restricted to humans, whereas genotypes 3 and 4 also occur in animals and are recognized as zoonotic pathogens. In this study, by screening goat faecal samples collected from six small farms located in the province of Teramo (Abruzzo region, Italy), HEV RNA was found with an overall prevalence of 9.2% (11/119). Upon sequence analysis of a 0.8 kb portion of the ORF2 gene, four strains were grouped with animal and human genotype 3 HEVs, subtype c, with the highest match (94.2–99.4% nt identity) to a wild boar strain, WB/P6-15/ITA, identified in the same geographical area in which the six goat farms were located. Further investigations are needed in order to assess if goat may represent an additional active host for HEV
    corecore