143 research outputs found

    Influence of Diabetes on Morphometric Index of Ovarian Follicles in Streptozocin-Induced Rats

    Get PDF
    The study aimed to determine the effect of diabetes on follicle development by measuring the diameters of rats' ovarian follicles. The structure and function of many organs change by being affected by diabetes. The ovary is an essential organ of the reproductive system affected by diabetes. The size of the ovarian follicles and corpus luteum can also be affected by diabetes. For this reason, body mass, blood glucose level, and rat ovarian follicles, and corpus luteum diameters were measured in this study. Ten healthy female rats were kept as the control group. In the other rat group, experimental diabetes was induced with streptozotocin (STZ)(60 mg/kg). The rats in both groups were killed after 30 days and their ovaries removed. 5-6 µm sections were made using paraffin embedding techniques and stained with hematoxylin-eosin. On the fifth day of STZ administration to rats, the mass loss of rats was 10%, and the diabetogenic index was 330%. Compared with the control group, diameters of diabetic rats significantly decreased the diameter of the primordial, primary and Graafian follicles, and corpus luteum. The decrease in the diameter of secondary follicles of diabetic rats was not significant. The percentage shrinkage index was the highest in the corpus luteum with 37%. As a result, it can be said that diabetes influences the size of the ovarian follicles and especially the corpus luteum, thereby negatively affecting the ability to improve oocyte quality. Diabetes-related follicle diameter may shrink and cause infertility. It may be essential to measure the diameters of the follicles in vitro fertilization studies in patients with diabetes

    Melissa officinalis L. ethanolic extract inhibits the growth of a lung cancer cell line by interfering with the cell cycle and inducing apoptosis

    Get PDF
    Melissa officinalis is a plant from the family Lamiaceae, native in Europe particularly in the Mediterranean region. Given our interest in identifying extracts and compounds capable of inhibiting tumor cell growth, and given the antioxidant content and the high consumption of Melissa officinalis in Portugal, this study aimed to test the tumor cell growth inhibitory activity of five different extracts of this plant (aqueous, methanolic, ethanolic, hydromethanolic and hydroethanolic) in three human tumor cell lines: MCF-7, AGS and NCI-H460. All extracts decreased cell growth in all cell lines in a concentration-dependent manner. The ethanolic extract was the most potent one, presenting a GI50 concentration of approximately 100.9 μg mL−1 in the NCI-H460 lung cancer cells. This extract was characterized by LC-DAD-ESI/MS regarding its phenolic composition, revealing rosmarinic acid as the most abundant compound. The GI75 concentration of this extract affected the cell cycle profile of these cells. In addition, both the GI50 and the GI75 concentrations of the extract induced cellular apoptosis. Moreover, treatment of NCI-H460 cells with this extract caused a decrease in pro-caspase 3 and an increase in p53 levels. This study emphasizes the relevance of the study of natural products as inhibitors of tumor cell growth.This work was financed by the FEDER - Fundo Europeu de Desenvolvimento Regional through the COMPETE 2020 – Operational Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT – Fundação para a Ciência e Tecnologia/ Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). The authors are also grateful to FCT and FEDER under Programme PT2020 for financial support to CIMO (UID/AGR/00690/2013) and L. Barros contract; and to FEDER-Interreg España-Portugal programme for financial support through the project 0377_Iberphenol_6_E.info:eu-repo/semantics/publishedVersio

    An implementation in Pascal: translation of Prolog into Pascal

    Get PDF
    http://archive.org/details/implementationin00saraNAN

    Stimuli Responsive Hydrogels: NIPAM/AAm/Carboxylic Acid Polymers

    No full text
    Stimuli-responsive hydrogels (SRH) were prepared by using monomers (i.e. N-isopropyl acrylamide; NIPAM and acrylamide; AAm), co-monomers (i.e. methacrylic acid; MPA or mesaconic acid; MFA) and a crosslinker (N, N’-methylene bisacrylamide; N-Bis). SRH have been prepared by thermal free radical polymerization reaction in aqueous solution. Spectroscopic and thermal analyses such as Fourier Transform Infrared Spectroscopy, thermogravimetric analysis and differential scanning calorimetry analysis were performed for SRH characterization. The equilibrium swelling studies by gravimetrically were carried out in different solvents, at the solutions, temperature, pH, and ionic strengths to determine their effect on swelling characteristic of the hydrogels. In addition, cycles equilibrium swelling studies were made with the solutions at different temperatures and at different pH. NIPAM/AAm hydrogel exhibits a lover critical solution temperature (LCST) at 28 oC, whereas NIPAM/AAm-MPA and NIPAM/AAm-MFA hydrogels exhibit a LCST at 31 C and 35 oC, respectively, and the LCST of NIPAM/AAm-MFA hydrogel is close to the body temperature
    corecore