132 research outputs found

    Labeled Memory Networks for Online Model Adaptation

    Full text link
    Augmenting a neural network with memory that can grow without growing the number of trained parameters is a recent powerful concept with many exciting applications. We propose a design of memory augmented neural networks (MANNs) called Labeled Memory Networks (LMNs) suited for tasks requiring online adaptation in classification models. LMNs organize the memory with classes as the primary key.The memory acts as a second boosted stage following a regular neural network thereby allowing the memory and the primary network to play complementary roles. Unlike existing MANNs that write to memory for every instance and use LRU based memory replacement, LMNs write only for instances with non-zero loss and use label-based memory replacement. We demonstrate significant accuracy gains on various tasks including word-modelling and few-shot learning. In this paper, we establish their potential in online adapting a batch trained neural network to domain-relevant labeled data at deployment time. We show that LMNs are better than other MANNs designed for meta-learning. We also found them to be more accurate and faster than state-of-the-art methods of retuning model parameters for adapting to domain-specific labeled data.Comment: Accepted at AAAI 2018, 8 page

    Coherent Probabilistic Aggregate Queries on Long-horizon Forecasts

    Full text link
    Long range forecasts are the starting point of many decision support systems that need to draw inference from high-level aggregate patterns on forecasted values. State of the art time-series forecasting methods are either subject to concept drift on long-horizon forecasts, or fail to accurately predict coherent and accurate high-level aggregates. In this work, we present a novel probabilistic forecasting method that produces forecasts that are coherent in terms of base level and predicted aggregate statistics. We achieve the coherency between predicted base-level and aggregate statistics using a novel inference method based on KL-divergence that can be solved efficiently in closed form. We show that our method improves forecast performance across both base level and unseen aggregates post inference on real datasets ranging three diverse domains. (\href{https://github.com/pratham16cse/AggForecaster}{Project URL})Comment: 7 pages, 1 figure, 1 table, 1 algorith
    • …
    corecore