33 research outputs found

    Non-coplanar trajectories to improve organ at risk sparing in volumetric modulated arc therapy for primary brain tumors.

    Get PDF
    Background and purpose To evaluate non-coplanar volumetric modulated arc radiotherapy (VMAT) trajectories for organ at risk (OAR) sparing in primary brain tumor radiotherapy.Materials and methods Fifteen patients were planned using coplanar VMAT and compared against non-coplanar VMAT plans for three trajectory optimization techniques. A geometric heuristic technique (GH) combined beam scoring and Dijkstra's algorithm to minimize the importance-weighted sum of OAR volumes irradiated. Fluence optimization was used to perform a local search around coplanar and GH trajectories, producing fluence-based local search (FBLS) and FBLS+GH trajectories respectively.Results GH, FBLS, and FBLS+GH trajectories reduced doses to the contralateral globe, optic nerve, hippocampus, temporal lobe, and cochlea. However, FBLS increased dose to the ipsilateral lens, optic nerve and globe. Compared to GH, FBLS+GH increased dose to the ipsilateral temporal lobe and hippocampus, contralateral optics, and the brainstem and body. GH and FBLS+GH trajectories reduced bilateral hippocampi normal tissue complication probability (p=0.028 and p=0.043, respectively). All techniques reduced PTV conformity; GH and FBLS+GH trajectories reduced homogeneity but less so for FBLS+GH.Conclusions The geometric heuristic technique best spared OARs and reduced normal tissue complication probability, however incorporating fluence information into non-coplanar trajectory optimization maintained PTV homogeneity

    Dosimetric accuracy of dynamic couch rotation during volumetric modulated arc therapy (DCR-VMAT) for primary brain tumours.

    Get PDF
    Radiotherapy treatment plans using dynamic couch rotation during volumetric modulated arc therapy (DCR-VMAT) reduce the dose to organs at risk (OARs) compared to coplanar VMAT, while maintaining the dose to the planning target volume (PTV). This paper seeks to validate this finding with measurements. DCR-VMAT treatment plans were produced for five patients with primary brain tumours and delivered using a commercial linear accelerator (linac). Dosimetric accuracy was assessed using point dose and radiochromic film measurements. Linac-recorded mechanical errors were assessed by extracting deviations from log files for multi-leaf collimator (MLC), couch, and gantry positions every 20 ms. Dose distributions, reconstructed from every fifth log file sample, were calculated and used to determine deviations from the treatment plans. Median (range) treatment delivery times were 125 s (123-133 s) for DCR-VMAT, compared to 78 s (64-130 s) for coplanar VMAT. Absolute point doses were 0.8% (0.6%-1.7%) higher than prediction. For coronal and sagittal films, respectively, 99.2% (96.7%-100%) and 98.1% (92.9%-99.0%) of pixels above a 20% low dose threshold reported gamma  <1 for 3% and 3 mm criteria. Log file analysis showed similar gantry rotation root-mean-square error (RMSE) for VMAT and DCR-VMAT. Couch rotation RMSE for DCR-VMAT was 0.091° (0.086-0.102°). For delivered dose reconstructions, 100% of pixels above a 5% low dose threshold reported gamma  <1 for 2% and 2 mm criteria in all cases. DCR-VMAT, for the primary brain tumour cases studied, can be delivered accurately using a commercial linac

    UK Consensus on Normal Tissue Dose Constraints for Stereotactic Radiotherapy

    Get PDF
    Six UK studies investigating stereotactic ablative radiotherapy (SABR) are currently open. Many of these involve the treatment of oligometastatic disease at different locations in the body. Members of all the trial management groups collaborated to generate a consensus document on appropriate organ at risk dose constraints. Values from existing but older reviews were updated using data from current studies. It is hoped that this unified approach will facilitate standardised implementation of SABR across the UK and will allow meaningful toxicity comparisons between SABR studies and internationally

    Matrix Metalloproteinase-2 and -9 Secreted by Leukemic Cells Increase the Permeability of Blood-Brain Barrier by Disrupting Tight Junction Proteins

    Get PDF
    Central nervous system (CNS) involvement remains an important cause of morbidity and mortality in acute leukemia, the mechanisms of leukemic cell infiltration into the CNS have not yet been elucidated. The blood-brain barrier (BBB) makes CNS become a refugee to leukemic cells and serves as a resource of cells that seed extraneural sites. How can the leukemic cells disrupt this barrier and invasive the CNS, even if many of the currently available chemotherapies can not cross the BBB? Tight junction in endothelial cells occupies a central role in the function of the BBB. Except the well known role of degrading extracellular matrix in metastasis of cancer cells, here we show matrix metalloproteinase (MMP)-2 and -9, secreted by leukemic cells, mediate the BBB opening by disrupting tight junction proteins in the CNS leukemia. We demonstrated that leukemic cells impaired tight junction proteins ZO-1, claudin-5 and occludin resulting in increased permeability of the BBB. However, these alterations reduced when MMP-2 and -9 activities were inhibited by RNA interference strategy or by MMP inhibitor GM6001 in an in vitro BBB model. We also found that the disruption of the BBB in company with the down-regulation of ZO-1, claudin-5 and occludin and the up-regulation of MMP-2 and -9 in mouse brain tissues with leukemic cell infiltration by confocal imaging and the assay of in situ gelatin zymography. Besides, GM6001 protected all mice against CNS leukemia. Our findings suggest that the degradation of tight junction proteins ZO-1, claudin-5 and occludin by MMP-2 and -9 secreted by leukemic cells constitutes an important mechanism in the BBB breakdown which contributes to the invasion of leukemic cells to the CNS in acute leukemia

    Feasibility of dosimetry-based high-dose I-131-meta-iodobenzylguanidine with topotecan as a radiosensitizer in children with metastatic neuroblastoma

    No full text
    Introduction: I-131-meta iodobenzylguanidine ((131I)-mIBG) therapy is established palliation for relapsed near-oblastoma. The topoisomerase-1 inhibitor, topotecan, has direct activity against neuroblastoma and acts as a radiation sensitiser. These 2 treatments are synergistic in laboratory studies. Theoretically, the benefit of I-131-mIBG treatment could be enhanced by dose escalation and combination with topotecan. Haeniatological support would be necessary to overcome the myelosuppression, which is the dose-limiting toxicity. Aims: Firstly, one aim of this study was to establish whether in vivo dosimetry could be used to guide the delivery of a precise total whole-body radiation-absorbed dose of 4 Gy accuratelyfroin 2 I-131-mIBG treatments. Secondly, the other aim. of this study was to determine whether it is feasible to combine this treatment with the topotecan in children with metastatic neuroblastoma. Material and Methods: An activity of I-131-mIBG (12 mCi/kg, 444 MBq/kg), estimated to give a whole-body absorbed-radiation dose of approximately 2 Gy, was administered on day 1, with topotecan 0.7 mg/m(2) administered daily from days 1-5. In vivo dosimetry was used to calculate a 2nd activity of I-131-mIBG, to be given on day 15 which would give a total whole-body dose of 4 Gy. A further 5 doses of topotecan were given from days 15-19. The myeloablative effect of this regimen was circumvented by peripheral blood stein cell or bone marrow support. Results: Eight children with relapsed stage IV neuroblastoma were treated. The treatment was delivered according to protocol in all patients. There were no unanticipated side-ffects. Satisfactory haematological reconstituition occurred in all patients. The measured total whole-body radiation-absorbed dose ranged from 3.7 Gy to 4.7 Gy (mean, 4.2 Gy). Conclusions: In vivo dosimetry allows for a specified total whole-body radiation dose to be delivered accurately. This schedule of intensification of I-131-mIBG therapy by close escalation and radiosensitization with topotecan with a haemopoietic autograft is safe and practicable. This approach should now be testedfor efficacy in a phase II clinical trial

    Fluence-Based Trajectory Optimization for Non-Coplanar VMAT

    Get PDF
    PURPOSE: To investigate a fluence-based trajectory optimization technique for non-coplanar VMAT for brain cancer. METHODS: Single-arc non-coplanar VMAT trajectories were determined using a heuristic technique for five patients. Organ at risk (OAR) volume intersected during raytracing was minimized for two cases: absolute volume and the sum of relative volumes weighted by OAR importance. These trajectories and coplanar VMAT formed starting points for the fluence-based optimization method. Iterative least squares optimization was performed on control points 24° apart in gantry rotation. Optimization minimized the root-mean-square (RMS) deviation of PTV dose from the prescription (relative importance 100), maximum dose to the brainstem (10), optic chiasm (5), globes (5) and optic nerves (5), plus mean dose to the lenses (5), hippocampi (3), temporal lobes (2), cochleae (1) and brain excluding other regions of interest (1). Control point couch rotations were varied in steps of up to 10° and accepted if the cost function improved. Final treatment plans were optimized with the same objectives in an in-house planning system and evaluated using a composite metric - the sum of optimization metrics weighted by importance. RESULTS: The composite metric decreased with fluence-based optimization in 14 of the 15 plans. In the remaining case its overall value, and the PTV and OAR components, were unchanged but the balance of OAR sparing differed. PTV RMS deviation was improved in 13 cases and unchanged in two. The OAR component was reduced in 13 plans. In one case the OAR component increased but the composite metric decreased - a 4 Gy increase in OAR metrics was balanced by a reduction in PTV RMS deviation from 2.8% to 2.6%. CONCLUSION: Fluence-based trajectory optimization improved plan quality as defined by the composite metric. While dose differences were case specific, fluence-based optimization improved both PTV and OAR dosimetry in 80% of cases

    SU-E-T-436: Fluence-Based Trajectory Optimization for Non-Coplanar VMAT.

    No full text
    PURPOSE: To investigate a fluence-based trajectory optimization technique for non-coplanar VMAT for brain cancer. METHODS: Single-arc non-coplanar VMAT trajectories were determined using a heuristic technique for five patients. Organ at risk (OAR) volume intersected during raytracing was minimized for two cases: absolute volume and the sum of relative volumes weighted by OAR importance. These trajectories and coplanar VMAT formed starting points for the fluence-based optimization method. Iterative least squares optimization was performed on control points 24° apart in gantry rotation. Optimization minimized the root-mean-square (RMS) deviation of PTV dose from the prescription (relative importance 100), maximum dose to the brainstem (10), optic chiasm (5), globes (5) and optic nerves (5), plus mean dose to the lenses (5), hippocampi (3), temporal lobes (2), cochleae (1) and brain excluding other regions of interest (1). Control point couch rotations were varied in steps of up to 10° and accepted if the cost function improved. Final treatment plans were optimized with the same objectives in an in-house planning system and evaluated using a composite metric - the sum of optimization metrics weighted by importance. RESULTS: The composite metric decreased with fluence-based optimization in 14 of the 15 plans. In the remaining case its overall value, and the PTV and OAR components, were unchanged but the balance of OAR sparing differed. PTV RMS deviation was improved in 13 cases and unchanged in two. The OAR component was reduced in 13 plans. In one case the OAR component increased but the composite metric decreased - a 4 Gy increase in OAR metrics was balanced by a reduction in PTV RMS deviation from 2.8% to 2.6%. CONCLUSION: Fluence-based trajectory optimization improved plan quality as defined by the composite metric. While dose differences were case specific, fluence-based optimization improved both PTV and OAR dosimetry in 80% of cases

    Non-coplanar trajectories to improve organ at risk sparing in volumetric modulated arc therapy for primary brain tumours

    No full text
    Background and purpose: To evaluate non-coplanar volumetric modulated arc radiotherapy (VMAT) trajectories for organ at risk (OAR) sparing in primary brain tumour radiotherapy. Materials and methods: Fifteen patients were planned using coplanar VMAT and compared against non-coplanar VMAT plans for three trajectory optimization techniques. A geometric heuristic technique (GH) combined beam scoring and Dijkstra's algorithm to minimize the importance-weighted sum of OAR volumes irradiated. Fluence optimization was used to perform a local search around coplanar and GH trajectories, producing fluence-based local search (FBLS) and FBLS+GH trajectories respectively. Results: GH, FBLS, and FBLS+GH trajectories reduced doses to the contralateral globe, optic nerve, hippocampus, temporal lobe, and cochlea. However, FBLS increased dose to the ipsilateral lens, optic nerve and globe. Compared to GH, FBLS+GH increased dose to the ipsilateral temporal lobe and hippocampus, contralateral optics, and the brainstem and body. GH and FBLS+GH trajectories reduced bilateral hippocampi normal tissue complication probability (p = 0.028 and p = 0.043, respectively). All techniques reduced PTV conformity; GH and FBLS+GH trajectories reduced homogeneity but less so for FBLS+GH. Conclusions: The geometric heuristic technique best spared OARs and reduced normal tissue complication probability, however incorporating fluence information into non-coplanar trajectory optimization maintained PTV homogeneity
    corecore