33 research outputs found

    Plasma Dynamics Characterization for Improvement of Resonantly Enhanced Harmonics Generation in Indium and Tin Laser-Produced Plasmas

    Get PDF
    R.A.G. is grateful to H. Kuroda for providing the access to the laser facility. As a Center of Excellence, the Institute of Solid State Physics at the University of Latvia received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement no. 739508, project CAMART².In this study, we characterize the properties of indium and tin laser-induced plasmas responsible for efficient high-order harmonics generation of the ultrashort pulses propagating through these media. The optimally formed plasma was determined using the analysis of the time-resolved variations in the spectral and morphological features of spreading indium and tin plasma components under different regimes of laser ablation. We report the measurements of plasma velocities under different regimes of ablation and correlate them with the optimal delay between the heating and probe laser pulses for the generation of harmonics with the highest yield. Electron temperatures and densities are determined using the integrated and time-resolved spectral measurements of plasmas. The resonance-enhanced harmonics are compared with other harmonics from the point of view of the modulation of plasma characteristics. The harmonics of 800 and 1200–2200 nm lasers and their second-harmonic fields were analyzed at optimal conditions of Sn and In plasma formation. The novelty of this work is the implementation of the diagnostics of the dynamics of plasma characteristics for the determination of the optimal plasma formation for harmonics generation. Such an approach allows for the demonstration of the maximal harmonic yield from the studied plasma and the definition of the various resonance-induced harmonic generation conditions. © 2022 by the authors.European Regional Development Fund (1.1.1.5/19/A/003); Institute of Solid-State Physics, University of Latvia has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase 2 under grant agreement No. 739508, project CAMART2

    Enhanced optical properties of yttrium aluminum garnet with the yttrium vanadate impurity phase

    Get PDF
    Yttrium aluminum garnet doped with europium with an additional impurity phase of yttrium vanadate doped europium has been prepared in different ways: synthesized by a sol-gel route and mechanically mixed in a mortar. The obtained samples were characterized by X-ray diffraction analysis, and scanning electron microscopy. Photoluminescence spectra were recorded to understand the role of the impurity phase in the garnet's optical properties. The impurity phase showed a significant contribution to the optical properties of Y3Al5O12:1%Eu. --//-- Monika Skruodiene, Ruta Juodvalkyte, Meldra Kemere, Rimantas Ramanauskas, Anatolijs Sarakovskis, Ramunas Skaudzius, Enhanced optical properties of yttrium aluminum garnet with the yttrium vanadate impurity phase, Heliyon, Volume 8, Issue 11, 2022, e11386, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2022.e11386. (https://www.sciencedirect.com/science/article/pii/S2405844022026743). Published under the CC BY-NC-ND licence.ERDF [1.1.1.2/VIAA/3/19/480]; the Institute of Solid State Physics, University of Latvia (Latvia), as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Frame-work Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART

    Synthesis, magnetoresistance, and thermoelectrical properties of environmentally stable n-type nitrogen-doped multiwalled carbon nanotubes

    Get PDF
    This work was funded by the European Regional Development Fund (ERDF) project no. 1.1.1.1/19/A/138. A.S. and K. S. acknowledge the funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2.Nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) are known as a perspective material for a variety of applications in nanoelectronic devices, sensors, catalysts for carbon dioxide reduction, and flexible thermoelectrics. However, up to date most of the reports on the properties of N-MWCNTs are focused on a narrow niche of research, for example, a study of low-temperature magnetoresistance or room-temperature thermoelectrical properties. In this work, N-MWCNTs were synthesized using benzene:pyridine precursor in different ratios, and both magnetoresistance and thermoelectrical properties of the synthesized N-MWCNTs were systematically investigated in the temperature range 2-300 K and compared with the properties of undoped MWCNTs. Unexpected switching of the magnetoresistance of the N-MWCNTs at low temperatures from negative to positive values was observed, and the processes underlying this effect are discussed. The study of the thermoelectrical properties revealed n-type conductance in the N-MWCNTs, which was attributed to the impact of nitrogen defects incorporated in the MWCNT structure. Performed for the first-time investigations of the thermal stability of the Seebeck coefficient of N-MWCNTs in air revealed that the Seebeck coefficient retains its negative values and even increases after annealing of the N-MWCNTs in air at 500 °C. These findings illustrate the high potential of the presented in this work N-MWCNTs for applications in different devices in a wide range of temperatures. --//-- Jana Andzane, Mikhail V. Katkov, Krisjanis Buks, Anatolijs Sarakovskis, Krisjanis Smits, Donats Erts, Synthesis, magnetoresistance, and thermoelectrical properties of environmentally stable n-type nitrogen-doped multiwalled carbon nanotubes, Carbon Trends, Volume 13, 2023,100302, ISSN 2667-0569, https://doi.org/10.1016/j.cartre.2023.100302. (https://www.sciencedirect.com/science/article/pii/S2667056923000573). Published under the CC BY-NC-ND licence.ERDF project no. 1.1.1.1/19/A/138. A.S; European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2

    Sol-gel assisted molten-salt synthesis of novel single phase Y3–2xCa2xTaxAl5−xO12:1%Eu garnet structure phosphors

    Get PDF
    Strong absorption and emission are the key the features of any phosphor. The results obtained during this study demonstrate the difficulty of the incorporation of tantalum ions into the garnet structure and reveal that only the combination of Sol-Gel synthesis method together with Molten-Salt technique enable to obtain a single-phase cubic garnet structure. Note that, the Sol-Gel synthesis assisted by further processing by Molten-Salt technique can be a potentially new way of material preparation reported in literature. This work also proves that this combination of synthesis methods is much more capable of incorporating ions with large ionic radii into the garnet structure as compared to traditional Sol-Gel method. Moreover, samples synthesized using this new technique exhibit 30% higher emission intensities as compared to the ones prepared by the original Sol-Gel method, while also reducing the needed sintering temperature by 200 °C. To the best of our knowledge, the modification of yttrium aluminum garnet (Y3Al5O12, YAG) by co-doping it with Ca2+ and Ta5+ ions by Sol-Gel assisted Molten-Salt route has been investigated for the first time. --//-- Monika Skruodiene, Ruta Juodvalkyte, Greta Inkrataite, Andrius Pakalniskis, Rimantas Ramanauskas, Anatolijs Sarakovskis, Ramunas Skaudzius, Sol-gel assisted molten-salt synthesis of novel single phase Y3–2xCa2xTaxAl5−xO12:1%Eu garnet structure phosphors, Journal of Alloys and Compounds, Volume 890, 2022, 161889, ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2021.161889. Article published under the CC BY license.The work of Monika Skruodiene is supported by ERDF PostDoc project No. 1.1.1.2/VIAA/3/19/480. Institute of Solid State Physics, University of Latvia has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

    High-order harmonics generation in Cd and Pd laser-induced plasmas

    Get PDF
    R.A.G. is grateful to H. Kuroda for providing access to the laser facility. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.We demonstrate the generation of high-order harmonics of laser pulses in palladium and cadmium plasmas. We adjusted the wavelength of driving pulses to investigate the resonance enhancement in different ranges of extreme ultraviolet region. The summation of incommensurate waves during the two-color pump of Pd and Cd plasmas allowed the generation of a broader range of harmonics. The theoretical aspects of the two-color pump of the laser-induced plasma are discussed. © 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement --//-- This is an open access article Rashid A. Ganeev, Vyacheslav V. Kim, Jelena Butikova, Aigars Atvars, Jurgis Grube, Anatolijs Sarakovskis, and Arnolds Ubelis, "High-order harmonics generation in Cd and Pd laser-induced plasmas," Opt. Express 31, 26626-26642 (2023), https://doi.org/10.1364/OE.493754 published under the CC BY 4.0 licence.European Regional Development Fund (1.1.1.5/19/A/003); World Bank Project (REP-04032022-206).Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

    Amorphous Calcium Phosphate and Amorphous Calcium Phosphate Carboxylate: Synthesis and Characterization

    Get PDF
    The authors acknowledge financial support from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement no. 857287 and Baltic Research Programme Project No. EEA-RESEARCH-85 “Waste-to-resource: eggshells as a source for next generation biomaterials for bone regeneration (EGGSHELL)” under the EEA Grant of Iceland, Liechtenstein and Norway No. EEZ/BPP/VIAA/2021/1. Institute of Solid State Physics, University of Latvia, received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART. 2Amorphous calcium phosphate (ACP) is the first solid phase precipitated from a supersaturated calcium phosphate solution. Naturally, ACP is formed during the initial stages of biomineralization and stabilized by an organic compound. Carboxylic groups containing organic compounds are known to regulate the nucleation and crystallization of hydroxyapatite. Therefore, from a biomimetic point of view, the synthesis of carboxylate ions containing ACP (ACPC) is valuable. Usually, ACP is synthesized with fewer steps than ACPC. The precipitation reaction of ACP is rapid and influenced by pH, temperature, precursor concentration, stirring conditions, and reaction time. Due to phosphates triprotic nature, controlling pH in a multistep approach becomes tedious. Here, we developed a new ACP and ACPC synthesis approach and thoroughly characterized the obtained materials. Results from vibration spectroscopy, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), true density, specific surface area, and ion release studies have shown a difference in the physiochemical properties of the ACP and ACPC. Additionally, the effect of a carboxylic ion type on the physiochemical properties of ACPC was characterized. All of the ACPs and ACPCs were synthesized in sterile conditions, and in vitro analysis was performed using MC-3T3E1 cells, revealing the cytocompatibility of the synthesized ACPs and ACPCs, of which the ACPC synthesized with citrate showed the highest cell viability. © 2023 The Authors. Published by American Chemical Society --//-- https://pubs.acs.org/doi/10.1021/acsomega.3c00796. Published under the CC BY 4.0 licence.EEA Grant of Iceland EEZ/BPP/VIAA/2021/1; Horizon 2020 Framework Programme 857287, EEA-RESEARCH-85; institute of Solid State Physics, University of Latvia, received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART.

    Bi2Se3 Nanostructured Thin Films as Perspective Anodes for Aqueous Rechargeable Lithium-Ion Batteries

    Get PDF
    Funding Information: This research was funded by the European Regional Development Fund Project (ERDF) No. 1.1.1.1/19/A/139. Y.R. acknowledges the support of post-doctoral ERDF project No. 1.1.1.2/VIAA/4/20/694. V.L. also acknowledges the support of “Strengthening of the capacity of doctoral studies at the University of Latvia within the framework of the new doctoral model”, identification No. 8.2.2.0/20/I/006. A.S. acknowledges the support from the Institute of Solid State Physics, University of Latvia, which, as the Center of Excellence, has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2. Publisher Copyright: © 2022 by the authors.In recent years, aqueous rechargeable lithium-ion batteries (ARLIBs) have attracted attention as an alternative technology for electrical storage. One of the perspective battery anode materials for application in ARLIBs is Bi2Se3, which has already shown good perspectives in the application of conventional lithium-ion batteries (LIBs) that use organic electrolytes. In this study, the electrochemical properties of Bi2Se3 thin films with two different layers on the electrode surface—the solid electrolyte interphase (SEI) and the Bi2O3 layer—were investigated. The results of this work show that the formation of the SEI layer on the surface of Bi2Se3 thin films ensures high diffusivity of Li+, high electrochemical stability, and high capacity up to 100 cycles, demonstrating the perspectives of Bi2Se3 as anode material for ARLIBs.publishersversionPeer reviewe

    Flame-Retardant and Tensile Properties of Polyamide 12 Processed by Selective Laser Sintering

    Get PDF
    This research was funded by the European Regional Development Fund within Measure 1.1.1.1 “Industry-Driven Research” of the Specific aid objective 1.1.1 “To increase the research and innovation capacity of scientific institutions of Latvia and their ability to attract external funding by investing in human resources and infrastructure” of the Operational Program “Growth and Employment” (Project No. 1.1.1.1/19/A/143). A.S. and A.Z. are grateful to funding received from the European Union Horizon 2020 Framework programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.Composite materials are becoming widely applied in fire-critical conditions such as, e.g., aviation interior parts. Environmental considerations motivate the use of additive manufacturing due to the decrease of polymer wastes, and therefore additional fuel sources. The aim of this work was to evaluate the effect of printing direction on flame retardancy and the tensile properties of 3D-printed test samples of polyamide 12 manufactured by selective laser sintering. The effects of printing parameters on the flammability of 3D-printed samples were investigated using vertical burn tests with varied specimen thicknesses and printing directions. It was found that these effects were substantial for the flammability at a low thickness of the test samples. No significant effects of printing direction were revealed for the tensile characteristics of polyamide 12. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.ERDF project 1.1.1.1/19/A/143; Institute of Solid-State Physics, University of Latvia has received funding from the European Union's Horizon 2020 Framework Pro gramme H2020-WIDESPREAD-01-2016-2017-Teaming Phase 2 under grant agreement No. 739508, project CAMART2.

    Thickness-dependent properties of ultrathin bismuth and antimony chalcogenide films formed by physical vapor deposition and their application in thermoelectric generators

    Get PDF
    This work was supported by the European Regional Development Fund (ERDF) project No 1.1.1.1/16/A/257. J. A. acknowledges the ERDF project No. 1.1.1.2/1/16/037. Institute of Solid State Physics, University of Latvia, Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017 TeamingPhase2 under grant agreement No. 739508, project CAMART2 . The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form a part of an ongoing study.In this work, a simple cost-effective physical vapor deposition method for obtaining high-quality Bi2Se3 and Sb2Te3 ultrathin films with thicknesses down to 5 nm on mica, fused quartz, and monolayer graphene substrates is reported. Physical vapor deposition of continuous Sb2Te3 ultrathin films with thicknesses 10 nm and below is demonstrated for the first time. Studies of thermoelectrical properties of synthesized Bi2Se3 ultrathin films deposited on mica indicated opening of a hybridization gap in Bi2Se3 ultrathin films with thicknesses below 6 nm. Both Bi2Se3 and Sb2Te3 ultrathin films showed the Seebeck coefficient and thermoelectrical power factors comparable with the parameters obtained for the high-quality thin films grown by the molecular beam epitaxy method. Performance of the best Bi2Se3 and Sb2Te3 ultrathin films is tested in the two-leg prototype of a thermoelectric generator.ERDF project No 1.1.1.1/16/A/257; ERDF project No. 1.1.1.2/1/16/037; Institute of Solid State Physics, University of Latvia, Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017 TeamingPhase2 under grant agreement No. 739508, project CAMART

    Effect of Core–Shell Rubber Nanoparticles on the Mechanical Properties of Epoxy and Epoxy-Based CFRP

    Get PDF
    This research was funded by M-Era.Net project MERF “Matrix for carbon reinforced epoxy laminates with reduced flammability” grant No. 1.1.1.5/ERANET/20/04 from the Latvian State Education Development Agency and M-Era.Net project “EPIC—European Partnership for Improved Composites“ funded by grant No. TH06020001. A.S., K.S. and A.Z. are grateful to funding received from the European Union Horizon 2020 Framework program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.The aim of the research was to estimate the effect of core–shell rubber (CSR) nanoparticles on the tensile properties, fracture toughness, and glass transition temperature of the epoxy and epoxy-based carbon fiber reinforced polymer (CFRP). Three additives containing CSR nanoparticles were used for the research resulting in a filler fraction of 2–6 wt.% in the epoxy resin. It was experimentally confirmed that the effect of the CSR nanoparticles on the tensile properties of the epoxy resin was notable, leading to a reduction of 10–20% in the tensile strength and elastic modulus and an increase of 60–108% in the fracture toughness for the highest filler fraction. The interlaminar fracture toughness of CFRP was maximally improved by 53% for ACE MX 960 at CSR content 4 wt.%. The glass transition temperature of the epoxy was gradually improved by 10–20 °C with the increase of CSR nanoparticles for all of the additives. A combination of rigid and soft particles could simultaneously enhance both the tensile properties and the fracture toughness, which cannot be achieved by the single-phase particles independently. © 2022 by the authors. --//-- This is an open access article Glaskova-Kuzmina T., Stankevics L., Tarasovs S., Sevcenko J., Špaček V., Sarakovskis A., Zolotarjovs A., Shmits K., Aniskevich A. "Effect of Core–Shell Rubber Nanoparticles on the Mechanical Properties of Epoxy and Epoxy-Based CFRP", (2022) Materials, 15 (21), art. no. 7502, DOI: 10.3390/ma15217502 published under the CC BY 4.0 licence.M-Era.Net project MERF grant No. 1.1.1.5/ERANET/20/04; Latvian State Education Development Agency and M-Era.Net project grant No. TH06020001; Institute of Solid-State Physics, University of Latvia has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase 2 under grant agreement No. 739508, project CAMART2
    corecore