16 research outputs found

    Therapeutic activity of lipoxin A4 in TiO2-induced arthritis in mice: NF-κB and Nrf2 in synovial fluid leukocytes and neuronal TRPV1 mechanisms

    Get PDF
    BACKGROUND: Lipoxin A4 (LXA METHODS: Mice were stimulated with TiO RESULTS: LXA CONCLUSION: LX

    Ehrlich tumor induces TRPV1-dependent evoked and non-evoked pain-like behavior in mice

    Get PDF
    We standardized a model by injecting Ehrlich tumor cells into the paw to evaluate cancer pain mechanisms and pharmacological treatments. Opioid treatment, but not cyclooxygenase inhibitor or tricyclic antidepressant treatments reduces Ehrlich tumor pain. To best use this model for drug screening it is essential to understand its pathophysiological mechanisms. Herein, we investigated the contribution of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in the Ehrlich tumor-induced pain model. Dorsal root ganglia (DRG) neurons from the Ehrlich tumor mice presented higher activity (calcium levels using fluo-4 fluorescent probe) and an increased response to capsaicin (TRPV1 agonist) than the saline-injected animals

    Therapeutic activity of lipoxin A4 in TiO2-induced arthritis in mice: NF-κB and Nrf2 in synovial fluid leukocytes and neuronal TRPV1 mechanisms

    Get PDF
    BackgroundLipoxin A4 (LXA4) has anti-inflammatory and pro-resolutive roles in inflammation. We evaluated the effects and mechanisms of action of LXA4 in titanium dioxide (TiO2) arthritis, a model of prosthesis-induced joint inflammation and pain.MethodsMice were stimulated with TiO2 (3mg) in the knee joint followed by LXA4 (0.1, 1, or 10ng/animal) or vehicle (ethanol 3.2% in saline) administration. Pain-like behavior, inflammation, and dosages were performed to assess the effects of LXA4in vivo.ResultsLXA4 reduced mechanical and thermal hyperalgesia, histopathological damage, edema, and recruitment of leukocytes without liver, kidney, or stomach toxicity. LXA4 reduced leukocyte migration and modulated cytokine production. These effects were explained by reduced nuclear factor kappa B (NFκB) activation in recruited macrophages. LXA4 improved antioxidant parameters [reduced glutathione (GSH) and 2,2-azino-bis 3-ethylbenzothiazoline-6-sulfonate (ABTS) levels, nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and Nrf2 protein expression], reducing reactive oxygen species (ROS) fluorescent detection induced by TiO2 in synovial fluid leukocytes. We observed an increase of lipoxin receptor (ALX/FPR2) in transient receptor potential cation channel subfamily V member 1 (TRPV1)+ DRG nociceptive neurons upon TiO2 inflammation. LXA4 reduced TiO2‐induced TRPV1 mRNA expression and protein detection, as well TRPV1 co-staining with p-NFκB, indicating reduction of neuronal activation. LXA4 down-modulated neuronal activation and response to capsaicin (a TRPV1 agonist) and AITC [a transient receptor potential ankyrin 1 (TRPA1) agonist] of DRG neurons.ConclusionLXA4 might target recruited leukocytes and primary afferent nociceptive neurons to exert analgesic and anti-inflammatory activities in a model resembling what is observed in patients with prosthesis inflammation

    As voltas do tempo: as reminiscências de um projeto de identidade nacional na cerâmica “marajoara” de Icoaraci

    No full text
    The "marajoara" ceramic produced in the district of Icoaraci (Belém), inspired in ceramics founded in Marajó Island, is one of the symbols that define the identity of the people in Pará today. Through government incentives, this artcraft production won public recognition, contributing to a national project survival started in the Imperial period, which recommended the creation of a Brazilian identity supported in the Indigenous’s image as an outstanding referent. Reflecting about the construction of identities from a material object of a popular culture, involves asking questions and reflections about concepts such as tradition, culture, identity, multiculturalism, cultural circularity, heterogeneity or hybridization. These concepts whose theoretical informations are found in the Canclini, Ginzburg, Milton Santos, Ulpiano Meneses and Marcos Areválo’s works contribute to the development of a new understanding about the identity of the people in Pará from their material culture: the traditional ceramic from Icoaraci.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorA cerâmica “marajoara” produzida no Distrito de Icoaraci (Belém), inspirada nas cerâmicas arqueológica encontradas na Ilha do Marajó, é um dos símbolos que definem hoje a identidade do paraense. Essa produção artesanal ao receber incentivos governamentais conquistou reconhecimento público e contribuiu para a sobrevivência de um projeto nacional, iniciado no período Imperial, que preconizava a criação de uma identidade brasileira amparada na imagem do indígena como um dos referentes marcantes. Refletir sobre a construção de identidades partindo de um objeto material da cultura popular, pressupõe levantar questões e reflexões sobre alguns conceitos como tradição, cultura, identidade, multiculturalismo, circularidade cultural, heterogeneidade ou hibridação. São considerações cuja base teórica encontra-se, entre outros, nos trabalhos de Nestor Canclini, Carlos Ginzburg, Milton Santos, Ulpiano Meneses e Marcos Areválo, cujas contribuições serviram de base para o desenvolvimento de uma nova leitura sobre a identidade do paraense a partir da sua cultura material: a cerâmica artesanal icoaraciense

    Maresin-2 inhibits inflammatory and neuropathic trigeminal pain and reduces neuronal activation in the trigeminal ganglion

    No full text
    Pain is a common symptom associated with disorders involving the orofacial structures. Most acute orofacial painful conditions are easily recognized, but the pharmacological treatment may be limited by the adverse events of current available drugs and/or patients’ characteristics. In addition, chronic orofacial pain conditions represent clinical challenges both, in terms of diagnostic and treatment. There is growing evidence that specialized pro-resolution lipid mediators (SPMs) present potent analgesic effects, in addition to their well characterized role in the resolution of inflammation. Maresins (MaR-1 and MaR-2) were the last described members of this family, and MaR-2 analgesic action has not yet been reported. Herein the effect of MaR-2 in different orofacial pain models was investigated. MaR-2 (1 or 10 ng) was always delivered via medullary subarachnoid injection, which corresponds to the intrathecal treatment. A single injection of MaR-2 caused a significant reduction of phases I and II of the orofacial formalin test in rats. Repeated injections of MaR-2 prevented the development of facial heat and mechanical hyperalgesia in a model of post-operative pain in rats. In a model of trigeminal neuropathic pain (CCI-ION), repeated MaR-2 injections reversed facial heat and mechanical hyperalgesia in rats and mice. CCI-ION increased c-Fos positive neurons and CGRP+ activated (nuclear pNFkB) neurons in the trigeminal ganglion (TG), which were restored to sham levels by MaR-2 repeated treatment. In conclusion, MaR-2 showed potent and long-lasting analgesic effects in inflammatory and neuropathic pain of orofacial origin and the inhibition of CGRP-positive neurons in the TG may account for MaR-2 action

    Development and Characterization of Thermal Water Gel Comprising <i>Helichrysum italicum</i> Essential Oil-Loaded Chitosan Nanoparticles for Skin Care

    No full text
    Helichrysum italicum essential oil (H. italicum EO) is recognized for its anti-inflammatory, antimicrobial and wound-healing properties. The main goal of the present work was the development and characterization of a gel formulation comprising H. italicum EO loaded in chitosan nanoparticles (NPs) for dermatological applications. H. italicum EO-loaded chitosan NPs presented hydrodynamic diameter and PdI of about 300 nm and 0.28, respectively, and a surface charge of +19 mV. The H. italicum EO-loaded chitosan NPs were prepared by means of ionic gelation and then incorporated into a thermal water gel formulation. The organoleptic and physicochemical properties of the developed gel were studied. The gel remained stable under accelerated test conditions, maintaining pH, viscosity and organoleptic properties. In addition, the formulation presented pH, viscosity and spreadability properties suitable for topical application. Finally, the performance of the gel in topical application was evaluated on the skin of volunteers using non-invasive methods, particularly, by means of biometric evaluation. These assays showed that the properties of the developed thermal water-based gel formulation with H. italicum EO-loaded chitosan NPs can improve skin hydration and maintain healthy skin conditions, demonstrating its putative role for distinct dermatological applications

    Ehrlich Tumor Induces TRPV1-Dependent Evoked and Non-Evoked Pain-like Behavior in Mice

    No full text
    We standardized a model by injecting Ehrlich tumor cells into the paw to evaluate cancer pain mechanisms and pharmacological treatments. Opioid treatment, but not cyclooxygenase inhibitor or tricyclic antidepressant treatments reduces Ehrlich tumor pain. To best use this model for drug screening it is essential to understand its pathophysiological mechanisms. Herein, we investigated the contribution of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in the Ehrlich tumor-induced pain model. Dorsal root ganglia (DRG) neurons from the Ehrlich tumor mice presented higher activity (calcium levels using fluo-4 fluorescent probe) and an increased response to capsaicin (TRPV1 agonist) than the saline-injected animals (p &lt; 0.05). We also observed diminished mechanical (electronic von Frey) and thermal (hot plate) hyperalgesia, paw flinching, and normalization of weight distribution imbalance in TRPV1 deficient mice (p &lt; 0.05). On the other hand, TRPV1 deficiency did not alter paw volume or weight, indicating no significant alteration in tumor growth. Intrathecal injection of AMG9810 (TRPV1 antagonist) reduced ongoing Ehrlich tumor-triggered mechanical and thermal hyperalgesia (p &lt; 0.05). Therefore, the contribution of TRPV1 to Ehrlich tumor pain behavior was revealed by genetic and pharmacological approaches, thus, supporting the use of this model to investigate TRPV1-targeting therapies for the treatment of cancer pain

    Resolvin D5 (RvD5) Reduces Renal Damage Caused by LPS Endotoxemia in Female Mice

    No full text
    In self-revolving gram-negative Escherichia coli infection, Resolvin D5 (RvD5) was found to enhance bacteria phagocytosis and reduce the production of inflammatory mediators, contributing to the resolution of infection. LPS (lipopolysaccharide) is a gram-negative bacterial structure product which activates the immune system and, at high doses, leads to endotoxemia. To our knowledge, the effect of RvD5 against LPS endotoxemia has not been investigated to date. Female Swiss mice received an i.p. treatment with RvD5 (0.1, 1 or 10 ng/animal). After 1 h, they were stimulated with LPS (10 mg/kg, i.v.), and samples were collected after additional 6 h. The resulting data demonstrated that RvD5 protected the kidneys (urea and creatinine serum levels) from tissue injury. These effects were related to an improvement in histopathological parameters and a reduction of enzymatic markers of leukocyte infiltration, pro-inflammatory cytokine (IL-1&beta;, TNF-&alpha;, and IL-6) production, and oxidative stress. Antioxidant markers were also increased by RvD5, but IL-10 (an anti-inflammatory cytokine) levels were unaltered. We also observed that RvD5 reduced the infiltration of CD45+ hematopoietic cells into the kidneys, reduced the activation of NF&kappa;B and promoted the Nrf2 pathway by reducing Keap-1 levels. Our data indicate that RvD5 may be a therapeutic possibility to reduce kidney lesions in LPS endotoxemia

    Hesperidin Methyl Chalcone Reduces the Arthritis Caused by TiO<sub>2</sub> in Mice: Targeting Inflammation, Oxidative Stress, Cytokine Production, and Nociceptor Sensory Neuron Activation

    No full text
    Arthroplasty is an orthopedic surgical procedure that replaces a dysfunctional joint by an orthopedic prosthesis, thereby restoring joint function. Upon the use of the joint prosthesis, a wearing process begins, which releases components such as titanium dioxide (TiO2) that trigger an immune response in the periprosthetic tissue, leading to arthritis, arthroplasty failure, and the need for revision. Flavonoids belong to a class of natural polyphenolic compounds that possess antioxidant and anti-inflammatory activities. Hesperidin methyl chalcone’s (HMC) analgesic, anti-inflammatory, and antioxidant effects have been investigated in some models, but its activity against the arthritis caused by prosthesis-wearing molecules, such as TiO2, has not been investigated. Mice were treated with HMC (100 mg/kg, intraperitoneally (i.p.)) 24 h after intra-articular injection of 3 mg/joint of TiO2, which was used to induce chronic arthritis. HMC inhibited mechanical hyperalgesia, thermal hyperalgesia, joint edema, leukocyte recruitment, and oxidative stress in the knee joint (alterations in gp91phox, GSH, superoxide anion, and lipid peroxidation) and in recruited leukocytes (total reactive oxygen species and GSH); reduced patellar proteoglycan degradation; and decreased pro-inflammatory cytokine production. HMC also reduced the activation of nociceptor-sensory TRPV1+ and TRPA1+ neurons. These effects occurred without renal, hepatic, or gastric damage. Thus, HMC reduces arthritis triggered by TiO2, a component released upon wearing of prosthesis

    Chikungunya Virus and Its Envelope Protein E2 Induce Hyperalgesia in Mice: Inhibition by Anti-E2 Monoclonal Antibodies and by Targeting TRPV1

    No full text
    Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain
    corecore