63 research outputs found

    Education amplifies brain atrophy effect on cognitive decline: implications for cognitive reserve.

    No full text
    Level of education is often regarded as a proxy for cognitive reserve in older adults. This implies that brain degeneration has a smaller effect on cognitive decline in those with more education, but this has not been directly tested in previous research. We examined how education, quantitative magnetic resonance imaging-based measurement of brain degeneration, and their interaction affect cognitive decline in diverse older adults spanning the spectrum from normal cognition to dementia. Gray matter atrophy was strongly related to cognitive decline. While education was not related to cognitive decline, brain atrophy had a stronger effect on cognitive decline in those with more education. Importantly, high education was associated with slower decline in individuals with lesser atrophy but with faster decline in those with greater atrophy. This moderation effect was observed in Hispanics (who had high heterogeneity of education) but not in African-Americans or Caucasians. These results suggest that education is an indicator of cognitive reserve in individuals with low levels of brain degeneration, but the protective effect of higher education is rapidly depleted as brain degeneration progresses

    The Latent Factor Structure Underlying Regional Brain Volume Change and Its Relation to Cognitive Change in Older Adults

    No full text
    ObjectiveLate-life changes in cognition and brain integrity are both highly multivariate, time-dependent processes that are essential for understanding cognitive aging and neurodegenerative disease outcomes. The present study seeks to identify a latent variable model capable of efficiently reducing a multitude of structural brain change magnetic resonance imaging (MRI) measurements into a smaller number of dimensions. We further seek to demonstrate the validity of this model by evaluating its ability to reproduce patterns of coordinated brain volume change and to explain the rate of cognitive decline over time.MethodWe used longitudinal cognitive data and structural MRI scans, obtained from a diverse sample of 358 participants (Mage = 74.81, SD = 7.17), to implement latent variable models for measuring brain change and to estimate the effects of these brain change factors on cognitive decline.ResultsResults supported a bifactor model for brain change with four group factors (prefrontal, temporolimbic, medial temporal, and posterior association) and one general change factor (global atrophy). Atrophy in the global (β = 0.434, SE = 0.070), temporolimbic (β = 0.275, SE = 0.085), and medial temporal (β = 0.240, SE = 0.085) factors were the strongest predictors of global cognitive decline. Overall, the brain change model explained 59% of the variance in global cognitive slope.ConclusionsThe current results suggest that brain change across 27 bilateral regions of interest can be grouped into five change factors, three of which (global gray matter, temporolimbic, and medial temporal lobe atrophy) are strongly associated with cognitive decline. (PsycInfo Database Record (c) 2021 APA, all rights reserved)
    corecore