6 research outputs found

    Urban air quality in a coastal city: Wollongong during the MUMBA campaign

    Get PDF
    We present findings from the Measurements of Urban, Marine and Biogenic Air (MUMBA) campaign, which took place in the coastal city of Wollongong in New SouthWales, Australia. We focus on a few key air quality indicators, along with a comparison to regional scale chemical transport model predictions at a spatial resolution of 1 km by 1 km. We find that the CSIRO chemical transport model provides accurate simulations of ozone concentrations at most times, but underestimates the ozone enhancements that occur during extreme temperature events. Themodel alsomeets previously published performance standards for fine particulate matter less than 2.5 microns in diameter (PM2.5), and the larger aerosol fraction (PM10). We explore the observed composition of the atmosphere within this urban air-shed during the MUMBA campaign and discuss the different influences on air quality in the city. Our findings suggest that further improvements to our ability to simulate air quality in this coastal city can be made through more accurate anthropogenic and biogenic emissions inventories and better understanding of the impact of extreme temperatures on air quality. The challenges in modelling air quality within the urban air-shed ofWollongong, including difficulties in accurate simulation of the local meteorology, are likely to be replicated in many other coastal cities in the Southern Hemisphere

    Comprehensive aerosol and gas data set from the Sydney Particle Study

    Get PDF
    The Sydney Particle Study involved the comprehensive measurement of meteorology, particles and gases at a location in western Sydney during February-March 2011 and April-May 2012. The aim of this study was to increase scientific understanding of particle formation and transformations in the Sydney airshed. In this paper we describe the methods used to collect and analyse particle and gaseous samples, as well as the methods employed for the continuous measurement of particle concentrations, particle microphysical properties, and gaseous concentrations. This paper also provides a description of the data collected and is a metadata record for the data sets published in Keywood et al. (2016a, line https://doi.org/10.4225/08/57903B83D6A5D \u3ehttps://doi.org/10.4225/08/57903B83D6A5D) and Keywood et al. (2016b, line https://doi.org/10.4225/08/5791B5528BD63 \u3ehttps://doi.org/10.4225/08/5791B5528BD63)

    The MUMBA campaign: measurements of urban, marine and biogenic air

    Get PDF
    The Measurements of Urban, Marine and Biogenic Air (MUMBA) campaign took place in Wollongong, New South Wales (a small coastal city approximately 80 km south of Sydney, Australia) from 21 December 2012 to 15 February 2013. Like many Australian cities, Wollongong is surrounded by dense eucalyptus forest, so the urban airshed is heavily influenced by biogenic emissions. Instruments were deployed during MUMBA to measure the gaseous and aerosol composition of the atmosphere with the aim of providing a detailed characterisation of the complex environment of the ocean-forest-urban interface that could be used to test the skill of atmospheric models. The gases measured included ozone, oxides of nitrogen, carbon monoxide, carbon dioxide, methane and many of the most abundant volatile organic compounds. The aerosol characterisation included total particle counts above 3 nm, total cloud condensation nuclei counts, mass concentration, number concentration size distribution, aerosol chemical analyses and elemental analysis. The campaign captured varied meteorological conditions, including two extreme heat events, providing a potentially valuable test for models of future air quality in a warmer climate. There was also an episode when the site sampled clean marine air for many hours, providing a useful additional measure of the background concentrations of these trace gases within this poorly sampled region of the globe. In this paper we describe the campaign, the meteorology and the resulting observations of atmospheric composition in general terms in order to equip the reader with a sufficient understanding of the Wollongong regional influences to use the MUMBA datasets as a case study for testing a chemical transport model. The data are available from PANGAEA (http: //doi.pangaea.de/10.1594/PANGAEA.871982)
    corecore