249 research outputs found

    The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway

    Get PDF
    BACKGROUND: The vanilloid receptor 1 (TRPV1) is critical in the development of inflammatory hyperalgesia. Several receptors including G-protein coupled prostaglandin receptors have been reported to functionally interact with the TRPV1 through a cAMP-dependent protein kinase A (PKA) pathway to potentiate TRPV1-mediated capsaicin responses. Such regulation may have significance in inflammatory pain. However, few functional receptor interactions that inhibit PKA-mediated potentiation of TRPV1 responses have been described. RESULTS: In the present studies we investigated the hypothesis that the μ opioid receptor (MOP) agonist morphine can modulate forskolin-potentiated capsaicin responses through a cAMP-dependent PKA pathway. HEK293 cells were stably transfected with TRPV1 and MOP, and calcium (Ca(2+)) responses to injection of the TRPV1 agonist capsaicin were monitored in Fluo-3-loaded cells. Pre-treatment with morphine did not inhibit unpotentiated capsaicin-induced Ca(2+ )responses but significantly altered capsaicin responses potentiated by forskolin. TRPV1-mediated Ca(2+ )responses potentiated by the direct PKA activator 8-Br-cAMP and the PKC activator Phorbol-12-myristate-13-acetatewere not modulated by morphine. Immunohistochemical studies confirmed that the TRPV1 and MOP are co-expressed on cultured Dorsal Root Ganglion neurones, pointing towards the existence of a functional relationship between the G-protein coupled MOP and nociceptive TRPV1. CONCLUSION: The results presented here indicate that the opioid receptor agonist morphine acts via inhibition of adenylate cyclase to inhibit PKA-potentiated TRPV1 responses. Targeting of peripheral opioid receptors may therefore have therapeutic potential as an intervention to prevent potentiation of TRPV1 responses through the PKA pathway in inflammation

    The calcium-cancer signalling nexus

    Get PDF
    The calcium signal is a powerful and multifaceted tool by which cells can achieve specific outcomes. Cellular machinery important in tumour progression is often driven or influenced by changes in calcium ions; in some cases this regulation occurs within spatially defined regions. Over the past decade there has been a deeper understanding of how calcium signalling is remodelled in some cancers and the consequences of calcium signalling on key events such as proliferation, invasion and sensitivity to cell death. Specific calcium signalling pathways have also now been identified as playing important roles in the establishment and maintenance of multidrug resistance and the tumour microenvironment

    Differential effects of two-pore channel protein 1 and 2 silencing in MDA-MB-468 breast cancer cells

    Get PDF
    Two-pore channel proteins, TPC1 and TPC2, are calcium permeable ion channels found localized to the membranes of endolysosomal calcium stores. There is increasing interest in the role of TPC-mediated intracellular signaling in various pathologies; however their role in breast cancer has not been extensively evaluated. TPC1 and TPC2 mRNA was present in all non-tumorigenic and tumorigenic breast cell lines assessed. Silencing of TPC2 but not TPC1 attenuated epidermal growth factor-induced vimentin expression in MDA-MB-468 breast cancer cells. This effect was not due to a general inhibition of epithelial to mesenchymal transition (EMT) as TPC2 silencing had no effect on epidermal growth factor (EGF)-induced changes on E-cadherin expression. TPC1 and TPC2 were also shown to differentially regulate cyclopiazonic acid (CPA)-mediated changes in cytosolic free Ca. These findings indicate potential differential regulation of signaling processes by TPC1 and TPC2 in breast cancer cells

    Consequences of activating the calcium-permeable ion channel TRPV1 in breast cancer cells with regulated TRPV1 expression

    Get PDF
    Increased expression of specific calcium channels in some cancers and the role of calcium signaling in proliferation and invasion have led to studies assessing calcium channel inhibitors as potential therapies for some cancers. The use of channel activators to promote death of cancer cells has been suggested, but the risk of activators promoting cancer cell proliferation and the importance of the degree of channel over-expression is unclear. We developed an MCF-7 breast cancer cell line with inducible TRPV1 overexpression and assessed the role of TRPV1 levels on cell death mediated by the TRPV1 activator capsaicin and the potential for submaximal activation to promote proliferation. The TRPV1 level was a determinant of cell death induced by capsaicin. A concentration response curve with varying TRPV1 expression levels identified the minimum level of TRPV1 required for capsaicin induced cell death. At no level of TRPV1 over-expression or capsaicin concentration did TRPV1 activation enhance proliferation. Cell death induced by capsaicin was necrotic and associated with up-regulation of c-Fos and RIP3. These studies suggest that activators of specific calcium channels may be an effective way to induce necrosis and that this approach may not always be associated with enhancement of cancer cell proliferation

    An automated epifluorescence microscopy imaging assay for the identification of phospho-AKT level modulators in breast cancer cells

    Get PDF
    AKT is an enzyme of the PI3K/pAKT pathway, regulating proliferation and cell survival. High basal levels of active, phosphorylated AKT (pAKT) are associated with tumor progression and therapeutic resistance in some breast cancer subtypes, including HER2 positive breast cancers. Various stimuli can increase pAKT levels and elevated basal pAKT levels are a feature of PTEN-deficient breast cancer cell lines. The aim of this study was to develop an assay able to identify modulators of pAKT levels using an automated epifluorescence microscope and high content analysis. To develop this assay, we used HCC-1569, a PTEN-deficient, HER2-overexpressing breast cancer cell line with elevated basal pAKT levels. HCC-1569 cells were treated with a selective pharmacological inhibitor of AKT (MK-2206) to reduce basal pAKT levels or EGF to increase pAKT levels. Immunofluorescence images were acquired using an automated epifluorescence microscope and integrated intensity of cytoplasmic pAKT staining was calculated using high content analysis software. Mean and median integrated cytoplasmic intensity were normalized using fold change and standard score to assess assay quality and to identify most robust data analysis. The highest z' factor was achieved for median data normalization using the standard score method (z' = 0.45). Using our developed assay we identified the calcium homeostasis regulating proteins TPRV6, STIM1 and TRPC1 as modulators of pAKT levels in HCC-1569 cells. Calcium signaling controls a diverse array of cellular processes and some calcium homeostasis regulating proteins are involved in modulating pAKT levels in cancer cells. Thus, these identified hits present promising targets for further assessment

    Calcium channel TRPV6 as a potential therapeutic target in estrogen receptor negative breast cancer

    Get PDF
    Calcium signaling is a critical regulator of cell proliferation. Elevated expression of calcium channels and pumps is a characteristic of some cancers, including breast cancer. We show that the plasma membrane calcium channel TRPV6, which is highly selective for Ca(2+), is overexpressed in some breast cancer cell lines. Silencing of TRPV6 expression in a breast cancer cell line with increased endogenous TRPV6 expression lead to a reduction in basal calcium influx and cellular proliferation associated with a reduction in DNA synthesis. TRPV6 gene amplification was identified as one mechanism of TRPV6 overexpression in a sub-set of breast cancer cell lines and breast tumor samples. Analysis of two independent microarray expression datasets from breast tumor samples showed that increased TRPV6 expression is a feature of estrogen receptor negative breast tumors encompassing the basal-like molecular subtype, as well as HER2-positive tumors. Breast cancer patients with high TRPV6 levels had decreased survival compared to patients with low or intermediate TRPV6 expression. Our findings suggest that inhibitors of TRPV6 may offer a novel therapeutic strategy for the treatment of estrogen receptor-negative breast cancers

    Low-dose cyclophosphamide induces anti-tumor T-cell responses which associate with survival in metastatic colorectal cancer

    Get PDF
    Purpose: Anti-cancer T-cell responses can control tumors, but immune-suppressive mechanisms in vivo prevent their function. The role of regulatory T-cells (Tregs) in metastatic colorectal cancer (mCRC) is unclear. We have previously shown depletion of Tregs enhances CRC-specific effector T-cell responses. Low dose cyclophosphamide (CPM) targets Tregs in animal models and some human studies, however the effect of CPM in mCRC is unknown. Experimental Design: Fifty-five mCRC patients were enrolled onto a phase I/II trial and randomized to receive two week-long courses of low-dose (50mg twice-a-day) CPM or not. The absolute number, phenotype and anti-tumor function of peripheral blood-derived lymphocyte subsets were monitored throughout treatment, along with 18-month follow-up. Results: Initially CPM reduced proliferation in all lymphocyte subsets, however, a rapid mobilization of effector T-cells overcame this decrease, leading to increased absolute T-cell numbers. In contrast, a reduction in proportional and absolute Treg, B-cell and NK-cell numbers occurred. The expansion and subsequent activation of effector T-cells was focused on tumor-specific T-cells, producing both granzyme B and IFN-gamma. CPM-treated patients demonstrating the most enhanced IFN-gamma+ tumor-specific T-cell responses exhibited a significant delay in tumor progression (HR=0.29, 95% CI 0.12-0.69, P=0.0047), compared to non-responders and no-treatment controls. Conclusions: CPM-induced Treg-depletion is mirrored by a striking boost to anti-tumor immunity. This study provides the first direct evidence of the benefit of naturally primed T-cells in mCRC patients. Our results also support the concept that non-mutated self-antigens can act as useful targets for immunotherapies
    • …
    corecore