5 research outputs found

    Implementing the MSFragger Search Engine as a Node in Proteome Discoverer

    No full text
    Here, we describe the implementation of the fast proteomics search engine MSFragger as a processing node in the widely used Proteome Discoverer (PD) software platform. PeptideProphet (via the Philosopher tool kit) is also implemented as an additional PD node to allow validation of MSFragger open (mass-tolerant) search results. These two nodes, along with the existing Percolator validation module, allow users to employ different search strategies and conveniently inspect search results through PD. Our results have demonstrated the improved numbers of PSMs, peptides, and proteins identified by MSFragger coupled with Percolator and significantly faster search speed compared to the conventional SEQUEST/Percolator PD workflows. The MSFragger-PD node is available at https://github.com/nesvilab/PD-Nodes/releases/

    Implementing the MSFragger Search Engine as a Node in Proteome Discoverer

    No full text
    Here, we describe the implementation of the fast proteomics search engine MSFragger as a processing node in the widely used Proteome Discoverer (PD) software platform. PeptideProphet (via the Philosopher tool kit) is also implemented as an additional PD node to allow validation of MSFragger open (mass-tolerant) search results. These two nodes, along with the existing Percolator validation module, allow users to employ different search strategies and conveniently inspect search results through PD. Our results have demonstrated the improved numbers of PSMs, peptides, and proteins identified by MSFragger coupled with Percolator and significantly faster search speed compared to the conventional SEQUEST/Percolator PD workflows. The MSFragger-PD node is available at https://github.com/nesvilab/PD-Nodes/releases/

    HDAC8 Substrates Identified by Genetically Encoded Active Site Photocrosslinking

    No full text
    The histone deacetylase family comprises 18 enzymes that catalyze deacetylation of acetylated lysine residues; however, the specificity and substrate profile of each isozyme remains largely unknown. Due to transient enzyme–substrate interactions, conventional co-immunoprecipitation methods frequently fail to identify enzyme-specific substrates. Additionally, compensatory mechanisms often limit the ability of knockdown or chemical inhibition studies to achieve significant fold changes observed by acetylation proteomics methods. Furthermore, measured alterations do not guarantee a direct link between enzyme and substrate. Here we present a chemical crosslinking strategy that incorporates a photoreactive, non-natural amino acid, <i>p</i>-benzoyl-l-phenylalanine, into various positions of the structurally characterized isozyme histone deacetylase 8 (HDAC8). After covalent capture, co-immunoprecipitation, and mass spectrometric analysis, we identified a subset of HDAC8 substrates from human cell lysates, which were further validated for catalytic turnover. Overall, this chemical crosslinking approach identified novel HDAC8-specific substrates with high catalytic efficiency, thus presenting a general strategy for unbiased deacetylase substrate discovery

    HDAC8 Substrates Identified by Genetically Encoded Active Site Photocrosslinking

    No full text
    The histone deacetylase family comprises 18 enzymes that catalyze deacetylation of acetylated lysine residues; however, the specificity and substrate profile of each isozyme remains largely unknown. Due to transient enzyme–substrate interactions, conventional co-immunoprecipitation methods frequently fail to identify enzyme-specific substrates. Additionally, compensatory mechanisms often limit the ability of knockdown or chemical inhibition studies to achieve significant fold changes observed by acetylation proteomics methods. Furthermore, measured alterations do not guarantee a direct link between enzyme and substrate. Here we present a chemical crosslinking strategy that incorporates a photoreactive, non-natural amino acid, <i>p</i>-benzoyl-l-phenylalanine, into various positions of the structurally characterized isozyme histone deacetylase 8 (HDAC8). After covalent capture, co-immunoprecipitation, and mass spectrometric analysis, we identified a subset of HDAC8 substrates from human cell lysates, which were further validated for catalytic turnover. Overall, this chemical crosslinking approach identified novel HDAC8-specific substrates with high catalytic efficiency, thus presenting a general strategy for unbiased deacetylase substrate discovery

    Oxidase Activity of the Barnacle Adhesive Interface Involves Peroxide-Dependent Catechol Oxidase and Lysyl Oxidase Enzymes

    No full text
    Oxidases are found to play a growing role in providing functional chemistry to marine adhesives for the permanent attachment of macrofouling organisms. Here, we demonstrate active peroxidase and lysyl oxidase enzymes in the adhesive layer of adult Amphibalanus amphitrite barnacles through live staining, proteomic analysis, and competitive enzyme assays on isolated cement. A novel full-length peroxinectin (AaPxt-1) secreted by barnacles is largely responsible for oxidizing phenolic chemistries; AaPxt-1 is driven by native hydrogen peroxide in the adhesive and oxidizes phenolic substrates typically preferred by phenoloxidases (POX) such as laccase and tyrosinase. A major cement protein component AaCP43 is found to contain ketone/aldehyde modifications via 2,4-dinitrophenylhydrazine (DNPH) derivatization, also called Brady’s reagent, of cement proteins and immunoblotting with an anti-DNPH antibody. Our work outlines the landscape of molt-related oxidative pathways exposed to barnacle cement proteins, where ketone- and aldehyde-forming oxidases use peroxide intermediates to modify major cement components such as AaCP43
    corecore