18 research outputs found

    Neuroinflammation and Neuronal Loss Precede Aβ Plaque Deposition in the hAPP-J20 Mouse Model of Alzheimer’s Disease

    No full text
    Recent human trials of treatments for Alzheimer's disease (AD) have been largely unsuccessful, raising the idea that treatment may need to be started earlier in the disease, well before cognitive symptoms appear. An early marker of AD pathology is therefore needed and it is debated as to whether amyloid-βAβ? plaque load may serve this purpose. We investigated this in the hAPP-J20 AD mouse model by studying disease pathology at 6, 12, 24 and 36 weeks. Using robust stereological methods, we found there is no neuron loss in the hippocampal CA3 region at any age. However loss of neurons from the hippocampal CA1 region begins as early as 12 weeks of age. The extent of neuron loss increases with age, correlating with the number of activated microglia. Gliosis was also present, but plateaued during aging. Increased hyperactivity and spatial memory deficits occurred at 16 and 24 weeks. Meanwhile, the appearance of plaques and oligomeric Aβ were essentially the last pathological changes, with significant changes only observed at 36 weeks of age. This is surprising given that the hAPP-J20 AD mouse model is engineered to over-expresses Aβ. Our data raises the possibility that plaque load may not be the best marker for early AD and suggests that activated microglia could be a valuable marker to track disease progression.Funding provided by Iain S. Gray Foundation, Stanley and John Roth, Patricia A. Quick foundation, David King, Doug Battersby, Tony and Vivian Howland-Rose, Walter and Edith Sheldon, Gleneagle Securities, Bill Gruy, Geoffrey Towner, Amadeus Energy Ltd., Nick and Melanie Kell, J. O. and J. R. Wicking Trust and the Mason Foundation, the New South Wales Government, through their office for Science and Medical Research, and SpinalCure Australia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Chronic stress induces prolonged suppression of the P2X7 receptor within multiple regions of the hippocampus: a cumulative threshold spectra analysis

    No full text
    A number of studies have identified that mutations in the P2X7 receptor occur with a significantly higher incidence in individuals with major depression. Consistent with these findings, a number of preclinical studies have identified that mice in which the P2X7 receptor has been deleted exhibit a higher level of resilience-like behaviour to acutely aversive situations. At present, however, no studies have examined changes in P2X7 receptor expression in otherwise healthy animals exposed to persistently stressful situations. This is significant as several lines of evidence have demonstrated that it is exposure to persistently aversive, rather than acutely aversive, situations that is associated with the emergence of mood disturbance. Accordingly, the objective of the current study was to examine whether chronic exposure to restraint stress was associated with alterations in the expression of P2X7 within the hippocampal formation. The study involved three principal groups: acute stress (1 session), chronic stress (21 sessions, 1 per day) and a chronic stress with recovery group (21 sessions, 1 per day followed by 7 days of no stress) and appropriate control groups. The results of the analysis indicate that all forms of stress, regardless of the duration, provoked a reduction in P2X7 receptor expression. Comparative analysis on normalised data indicated that the magnitude of the P2X7 reduction was significantly greater in the chronic stress relative to the acute stress group. We additionally found that there was a gradual rebound in P2X7 expression, in two of nine regions examined, in animals that were allowed to recover for 7 days following the final stress session. Collectively, these findings provide the first evidence that exposure to chronic restraint stress produces a pronounced and relatively persistent suppression of the P2X7 receptor within the hippocampus

    Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes

    No full text
    Chronic stress is well recognized to decrease the number of GFAP⁺ astrocytes within the prefrontal cortex (PFC). Recent research, however, has suggested that our understanding of how stress alters astrocytes may be incomplete. Specifically, chronic stress has been shown to induce a unique form of microglial remodelling, but it is not yet clear whether astrocytes also undergo similar structural modifications. Such alterations may be significant given the role of astrocytes in modulating synaptic function. Accordingly, in the current study we have examined changes in astrocyte morphology following exposure to chronic stress in adult rats, using three-dimensional digital reconstructions of astrocytes. Our analysis indicated that chronic stress produced profound atrophy of astrocyte process length, branching and volume. We additionally examined changes in astrocyte-specific S100β, which are both a putative astrocyte marker and a protein whose expression is associated with astrocyte distress. While we found that S100β levels were increased by stress, this increase was not correlated with atrophy. We further established that while chronic stress was associated with a decrease in astrocyte numbers when GFAP labelling was used as a marker, we could find no evidence of a decrease in the total number of cells, based on Nissl staining, or in the number of S100β⁺ cells. This finding suggests that chronic stress may not actually reduce astrocyte numbers and may instead selectively decrease GFAP expression. The results of the current study are significant as they indicate stress-induced astrocyte-mediated disturbances may not be due to a loss of cells but rather due to significant remodeling of the astrocyte network

    Dynamic structural remodelling of microglia in health and disease: a review of the models, the signals and the mechanisms

    No full text
    Microglia are unique cells within the central nervous system because of their biophysical independence. As a result of this unusual property the cells must undergo significant structural remodelling in order to engage and connect with other elements within the central nervous system. Efficient remodelling is required for all activities that microglia are involved in ranging from monitoring synaptic information flow through to phagocytosis of tissue debris. Despite the fact that morphological remodelling is a pre-requisite to all microglial activities, relatively little research has been undertaken on the topic. This review examines what is known about how microglia transform themselves during development, under physiological conditions in response to changes in neuronal activity, and under pathological circumstances. Specific attention is given to exploring a variety of models that have been proposed to account for microglial transformation as well as the signals that are known to trigger these transformations

    Chronic stress induced remodeling of the prefrontal cortex : structural re-organization of microglia and the inhibitory effect of minocycline

    Full text link
    Recently, it has been discovered that the working memory deficits induced by exposure to chronic stress can be prevented by treating stressed animals with minocycline, a putative inhibitor of microglial activity. One of the pressing issues that now requires clarification is exactly how exposure to chronic stress modifies microglial morphology, this being a significant issue as microglial morphology is tightly coupled with their function. To examine how chronic stress alters microglial morphology, we digitally reconstructed microglia within the rat medial prefrontal cortex. Our analysis revealed that stress increased the internal complexity of microglia, enhancing ramification (i.e. branching) without altering the overall area occupied by the cell and that this effect was more pronounced in larger cells. We subsequently determined that minocycline treatment largely abolished the pro-ramifying effects of stress. With respect to mechanisms, we could not find any evidence of increased inflammation or neurodegeneration (interleukin-1β, MHC-II, CD68, terminal deoxynucleotidyl transferase dUTP nick end labeling, and activated caspase-3). We did, however, find that chronic stress markedly increased the expression of β1-integrin (CD29), a protein previously implicated in microglial ramification. Together, these findings highlight that increased ramification of microglia may represent an important neurobiological mechanism through which microglia mediate the behavioral effects of chronic psychological stress

    Time course of disease progression, as a percentage of hAPP-J20 6-week-old mice.

    No full text
    <p>Mice exhibit 32% loss of neurons in the CA1 region of the hippocampus between 6 weeks and 36 weeks of age. In addition, a 163% increase in the number of CD68-positive microglia and a 62% increase in the number of CA1 GFAP-positive astrocytes occurred between 6 weeks and 36 weeks of age. Total Aβ expression increases by 242% between the ages of 6 weeks and 36 weeks of age. Small arrow represents plaque load in some mice, while larger arrow represents plaque load in all mice.</p

    Spatial learning and memory deficits in hAPP-J20 mice.

    No full text
    <p>(A) Schematic representation of the radial arm maze. Filled circles represent the baited arms (B) hAPP-J20 mice had significantly impaired spatial reference memory and learning at 16 weeks of age (<i>p</i><0.05) when compared to age-matched WT littermates. (C) 16-week-old hAPP-J20 mice had significant deficits in spatial reference memory and learning retention (<i>p</i><0.05) when compared to age-matched WT littermates. (D) 24-week-old hAPP-J20 mice also showed significantly impaired spatial reference memory and learning (<i>p</i><0.05) when compared to age-matched WT littermates. (E) Spatial reference memory and learning retention was significantly impaired in 24-week-old hAPP-J20 mice (<i>p</i><0.05). Each value represents the mean ± standard error of the mean (SEM). *<i>p</i><0.05, **<i>p</i><0.01.</p

    Quantification of GFAP-positive astrocytes in hAPP-J20 mice.

    No full text
    <p>GFAP-positive astrocytes in the hippocampus were observed more often in (B) 36-week-old hAPP-J20 mice compared to age-matched (A) WT littermates. (C) Quantification analysis revealed no differences in GFAP-positive astrocytes in the CA3 at 6 or 12 weeks, however significant increases in cell number were detected at 24 (<i>p</i><0.05) and 36 weeks (<i>p</i><0.05). (D) In the CA1 region of the hippocampus, there was no increase in GFAP-positive astrocytes at 6 and 36 weeks, though significant increases at 12 (<i>p</i><0.05) and 24 weeks (<i>p</i><0.05) were observed when compared to WT controls. In addition, a significant increase occurred between 6 week and 24-week-old hAPP-J20 mice (<i>p</i><0.05). Each value represents the mean ± standard error of the mean (SEM). *<i>p</i><0.05.</p
    corecore