4 research outputs found

    (Tissue) P Systems with Vesicles of Multisets

    Full text link
    We consider tissue P systems working on vesicles of multisets with the very simple operations of insertion, deletion, and substitution of single objects. With the whole multiset being enclosed in a vesicle, sending it to a target cell can be indicated in those simple rules working on the multiset. As derivation modes we consider the sequential mode, where exactly one rule is applied in a derivation step, and the set maximal mode, where in each derivation step a non-extendable set of rules is applied. With the set maximal mode, computational completeness can already be obtained with tissue P systems having a tree structure, whereas tissue P systems even with an arbitrary communication structure are not computationally complete when working in the sequential mode. Adding polarizations (-1, 0, 1 are sufficient) allows for obtaining computational completeness even for tissue P systems working in the sequential mode.Comment: In Proceedings AFL 2017, arXiv:1708.0622

    Stormwater ponds can contain comparable biodiversity to unmanaged wetlands in urban areas

    No full text
    <p>Urban freshwaters provide a range of ecosystem services, including stormwater management, water treatment, biodiversity, and aesthetics. Management of freshwaters should aim to maximise as many of these services as possible, but managers are often focused on individual services. To test for the biodiversity value of stormwater management ponds (SMPs) in Ottawa, Canada, 20 SMPs were surveyed for macroinvertebrates using standardised sampling techniques. These were compared against 10 wetlands that were not managed for stormwater control (a combination of ornamental lakes, natural lakes, and nature reserves) in and around the same urban area (a total of 30 ponds). Natural wetlands and SMPs were very different in their water chemistry, which was correlated with the proportion of urban land use within 1 km of the site, with higher conductivity in SMPs with increasing urban land cover (P = 0.046). Despite this, natural wetlands and the richest SMPs contained similar levels of biodiversity and similar macroinvertebrate community structure. This study highlights that stormwater management can occur alongside biodiversity enhancement in urban areas, but correlations between urban land use, water chemistry, and the structure of biological communities suggests that run-off from urban areas is likely a major factor in structuring biological communities in built-up regions.</p

    Polybrominated Diphenyl Ethers, 2,2′,4,4′,5,5′-Hexachlorobiphenyl (PCB-153), and <i>p</i>,<i>p</i>′‑Dichlorodiphenyldichloroethylene (<i>p</i>,<i>p</i>′‑DDE) Concentrations in Sera Collected in 2009 from Texas Children

    No full text
    Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and <i>p</i>,<i>p</i>′-dichlorodiphenyldichloroethylene (<i>p</i>,<i>p</i>′-DDE) have been measured in surplus serum collected in 2009 from a convenience sample of 300 Texas children (boys and girls) in the birth to 13 years of age range. Serum concentrations of traditional persistent organic pollutants such as 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB-153) and <i>p</i>,<i>p</i>′-DDE did not change consistently with age. By contrast, serum concentrations of tetra-, penta-, and hexa-BDEs were lowest in the youngest children (birth to two year old) and increased 3.0 to 7.9 times, depending on the analyte, for children in the >4 to 6 years of age group. From the apex concentration to the 10 to 13 years of age group, concentrations decreased significantly except for 2,2′,4,4′,5,5′-hexabromodiphenyl ether (PBDE-153), which also had a longer apex concentration of >4 to 8 years of age. This concentration trend for PBDE-153 is most likely due to a longer half-life of PBDE-153 than of other PBDE congeners. The observed PBDEs concentration patterns by age may be related, at least in part, to ingestion of residential dust containing PBDEs through hand-to-mouth behavior among toddlers, preschoolers, and kindergarteners. Further studies to characterize young children’s exposure to PBDEs are warranted and, in particular, to determine the lifestyle factors that may contribute to such exposures
    corecore