14 research outputs found

    Preparation, formation mechanism, photocatalytic, cytotoxicity and antioxidant activity of sodium niobate nanocubes.

    No full text
    A hydrothermal method was employed to prepare the sodium niobate (NaNbO3) nanocubes. We executed time dependent experiments to illustrate the formation mechanism of sodium niobate nanocubes. It was observed that the morphology of NaNbO3 nanocubes was dependent on the reaction time and 12hr reaction time was found to be suitable. Morphology, composition, structure and optical properties of sodium niobate nanocubes were evaluated by scanning electron microscope, X-ray energy-dispersive spectrometer, X-ray diffraction and UV-visible diffuse reflectance spectrometer. The photocatalytic activity of sodium niobate was studied for photocatalytic hydrogen production. It was anticipated that the sodium niobate (NaNbO3) cubes exhibited good photocatalytic activity under UV light irradiation using lactic acid as sacrificial agent. The cytotoxicity activity of sodium niobate nanocubes was studied as well at different concentrations (5 mg/mL, 3 mg/mL, 1 mg/mL, and 0.25 mg/mL) against human colon colorectal carcinoma cell line (HCT116) by MTT assay and EC50 was found to be 1.9 mg/mL. Sodium niobate proved to be a good DPPH free radical scavenging material, tested at different concentrations. It was noticed that peak intensity at 517 nm was decreased after 30 minute incubation, further supporting the antioxidant activity. This study will be useful for design and engineering of materials that can be used in biomedical applications and in photocatalysis

    Hydrothermal Synthesis of β-Nb<sub>2</sub>ZnO<sub>6</sub> Nanoparticles for Photocatalytic Degradation of Methyl Orange and Cytotoxicity Study

    No full text
    β-Nb2ZnO6 nanoparticles were synthesized by a hydrothermal process and calcined at two temperatures, 500 °C and 700 °C, and assigned as A and B, respectively. X-ray diffraction, together with transmission electron microscopy, revealed that the β-Nb2ZnO6 nanoparticles calcined at 700 °C (B) were more crystalline than the β-Nb2ZnO6 calcined at 500 °C (A) with both types of nanoparticles having an average size of approximately 100 nm. The physiochemical, photocatalytic, and cytotoxic activities of both types of β-Nb2ZnO6 nanoparticles (A and B) were examined. Interestingly, the photodegradation of methyl orange, used as a standard for environmental pollutants, was faster in the presence of the β-Nb2ZnO6 nanoparticles calcined at 500 °C (A) than in the presence of those calcined at 700 °C (B). Moreover, the cytotoxicity was evaluated against different types of cancer cells and the results indicated that both types of β-Nb2ZnO6 nanoparticles (A and B) exhibited high cytotoxicity against MCF-7 and HCT116 cells but low cytotoxicity against HeLa cells after 24 and 48 h of treatment. Overall, both products expressed similar EC50 values on tested cell lines and high cytotoxicity after 72 h of treatment. As a photocatalyst, β-Nb2ZnO6 nanoparticles (A) could be utilized in different applications including the purification of the environment and water from specific pollutants. Further biological studies are required to determine the other potential impacts of utilizing β-Nb2ZnO6 nanoparticles in the biomedical application field

    Isolation, Culture, and Functional Characterization of Human Embryonic Stem Cells: Current Trends and Challenges

    No full text
    Human embryonic stem cells (hESCs) hold great potential for the treatment of various degenerative diseases. Pluripotent hESCs have a great ability to undergo unlimited self-renewal in culture and to differentiate into all cell types in the body. The journey of hESC research is not that smooth, as it has faced several challenges which are limited to not only tumor formation and immunorejection but also social, ethical, and political aspects. The isolation of hESCs from the human embryo is considered highly objectionable as it requires the destruction of the human embryo. The issue was debated and discussed in both public and government platforms, which led to banning of hESC research in many countries around the world. The banning has negatively affected the progress of hESC research as many federal governments around the world stopped research funding. Afterward, some countries lifted the ban and allowed the funding in hESC research, but the damage has already been done on the progress of research. Under these unfavorable conditions, still some progress was made to isolate, culture, and characterize hESCs using different strategies. In this review, we have summarized various strategies used to successfully isolate, culture, and characterize hESCs. Finally, hESCs hold a great promise for clinical applications with proper strategies to minimize the teratoma formation and immunorejection and better cell transplantation strategies

    Design and Evaluation of Pegylated Large 3D Pore Ferrisilicate as a Potential Insulin Protein Therapy to Treat Diabetic Mellitus

    No full text
    An iron-based SBA-16 mesoporous silica (ferrisilicate) with a large surface area and three-dimensional (3D) pores is explored as a potential insulin delivery vehicle with improved encapsulation and loading efficiency. Fe was incorporated into a framework of ferrisilicate using the isomorphous substitution technique for direct synthesis. Fe3+ species were identified using diffuse reflectance spectroscopy. The large surface area (804 m2/g), cubic pores (3.2 nm) and insulin loading were characterized using XRD, BET surface area, FTIR and TEM analyses. For pH sensitivity, the ferrisilicate was wrapped with polyethylene glycol (MW = 400 Daltons) (PEG). For comparison, Fe (10 wt%) was impregnated on a Korea Advanced Institute of Science and Technology Number 6 (KIT-6) sieve and Mesocellular Silica Foam (MSU-F). Insulin loading was optimized, and its release mechanism was studied using the dialysis membrane technique (MWCO = 14,000 Da) at physiological pH = 7.4, 6.8 and 1.2. The kinetics of the drug’s release was studied using different structured/insulin nanoformulations, including Santa Barbara Amorphous materials (SBA-15, SBA-16), MSU-F, ultra-large-pore FDU-12 (ULPFDU-12) and ferrisilicates. A different insulin adsorption times (0.08–1 h), insulin/ferrisilicate ratios (0.125–1.0) and drug release rates at different pH were examined using the Korsmeyer–Peppas model. The rate of drug release and the diffusion mechanisms were obtained based on the release constant (k) and release exponent (n). The cytotoxicity of the nanoformulation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using human foreskin fibroblast (HFF-1) cells. A low cytotoxicity was observed for this nanoformulation starting at the highest concentrations used, namely, 400 and 800 μg. The hypoglycemic activity of insulin/ferrisilicate/PEG on acute administration in Wistar rats was studied using doses of 2, 5 and 10 mg/kg body weight. The developed facile ferrisilicate/PEG nanoformulation showed a high insulin encapsulation and loading capacity with pH-sensitive insulin release for potential delivery through the oral route

    Extracts of Clove (Syzygium aromaticum) Potentiate FMSP-Nanoparticles Induced Cell Death in MCF-7 Cells

    No full text
    Both nanoparticles and cloves (Syzygium aromaticum) possess anticancer properties, but they do not elicit a significant response on cancer cells when treated alone. In the present study, we have tested fluorescent magnetic submicronic polymer nanoparticles (FMSP-nanoparticles) in combination with crude clove extracts on human breast cancer cells (MCF-7) to examine whether the combination approach enhance the cancer cell death. The MCF-7 cells were treated with different concentrations (1.25 μg/mL, 12.5 μg/mL, 50 μg/mL, 75 μg/mL, and 100 μg/mL) of FMSP-nanoparticles alone and in combination with 50 μg/mL crude clove extracts. The effects of FMSP-nanoparticles alone and combined with clove extracts were observed after 24 hrs and 48 hrs intervals. The response of FMSP-nanoparticles-treated cells was evaluated by Trypan Blue, 4′,6-diamidino-2-phenylindole (DAPI), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. We have demonstrated that cancer cell viability was decreased to 55.40% when treated with FMSP-nanoparticles alone, whereas when cancer cells were treated with FMSP-nanoparticles along with crude clove extracts, the cell viability was drastically decreased to 8.50%. Both morphological and quantitative data suggest that the combination of FMSP-nanoparticles plus crude clove extracts are more effective in treating cancer cells and we suggest that the combination treatment of nanoparticles along with clove extracts hold a great promise for the cancer treatments

    FMSP-Nanoparticles Induced Cell Death on Human Breast Adenocarcinoma Cell Line (MCF-7 Cells): Morphometric Analysis

    No full text
    Currently, breast cancer treatment mostly revolves around radiation therapy and surgical interventions, but often these treatments do not provide satisfactory relief to the patients and cause unmanageable side-effects. Nanomaterials show promising results in treating cancer cells and have many advantages such as high biocompatibility, bioavailability and effective therapeutic capabilities. Interestingly, fluorescent magnetic nanoparticles have been used in many biological and diagnostic applications, but there is no report of use of fluorescent magnetic submicronic polymer nanoparticles (FMSP-nanoparticles) in the treatment of human breast cancer cells. In the present study, we tested the effect of FMSP-nanoparticles on human breast cancer cells (MCF-7). We tested different concentrations (1.25, 12.5 and 50 &micro;g/mL) of FMSP-nanoparticles in MCF-7 cells and evaluated the nanoparticles response morphometrically. Our results revealed that FMSP-nanoparticles produced a concentration dependent effect on the cancer cells, a dose of 1.25 &micro;g/mL produced no significant effect on the cancer cell morphology and cell death, whereas dosages of 12.5 and 50 &micro;g/mL resulted in significant nuclear augmentation, disintegration, chromatic condensation followed by dose dependent cell death. Our results demonstrate that FMSP-nanoparticles induce cell death in MCF-7 cells and may be a potential anti-cancer agent for breast cancer treatment
    corecore