7 research outputs found

    Molecular Genetics and Genome Biology of Goats

    Get PDF
    Information on goat genome has led to a better understanding of the genetics of goats, its response to infection and the underlying immune response mechanism. Natural product-based therapeutic can therefore be utilized to target genes important for goat immunity. In this chapter, we have summarized the effect of diet and dietary supplements as immune modulators in goats. These modulators affect the expression of genes and secreted proteins associated with innate and adaptive immune response and homeostasis. Probiotics, mushroom extracts, plant polyphenol extracts, Sericea lespedeza (SL) and cowpea diet affect key molecular pathways including Toll-like receptor (TLR) pathway, Wnt signaling pathway and cytokine-mediated signaling pathway. Results from various studies reviewed in this chapter suggest that utilization of dietary immunomodulators has beneficial effects on goat health and production

    Probiotics and Ruminant Health

    Get PDF
    Probiotics are viable microorganisms with beneficial health effects for humans and animals. They are formulated into many functional foods and animal feed. There is a growing research interest in the application and benefits of probiotics in ruminant production. Several recent studies have evaluated the potential of probiotics in animal nutrition and health. In this chapter, we have reviewed current research on the benefits of probiotics on gut microbial communities in ruminants and their impact on ruminant production, health and overall wellbeing

    Quantitative Trait Locus Analysis of Iron Deficiency Chlorosis in Soybean

    No full text
    Soybean production in most of the northern plain area is challenged by iron deficiency chlorosis (IDC), a physiological problem with plants grown in high pH calcareous soils. Planting tolerant varieties is the best approach to meet the challenge. Currently, the variety development is limited by lack of genetic resources and knowledge about mechanisms of resistance to IDC. The previous research in the Seed Molecular Biology Laboratory at SDSU developed a population of recombinant inbred lines (RILs) from a cross between a cultivated (Glycine max) and a wild (G. soja) soybean line. The objectives of this research were: 1) to evaluate the RIL population for genetic variability of the IDC trait and its relationship with plant iron (Fe) content, and 2) to generate a linkage map covering the wild soybean genome to map quantitative trait loci (QTL) associated with the IDC trait. A total of 207 RILs were grown in the same field (soil pH 8.0 - 8.3) with four replications to evaluate IDC symptoms using a 1 (most resistant) – 5 (most susceptible) scale at 3 or 4 time points of plant development in summers of 2012 and 2013. Plants from 25 RILs (5 for each of the 5 scales) were sampled to quantify soluble (Fe2+) and total Fe contents using atomic absorption spectrometry and inductively coupled plasma-optical emission spectrometry (ICP-OES). Simple sequence repeat (SSR) markers were screened for polymorphism between the cultivated and wild soybean lines to genotype the RILs to construct a linkage map. An interval-mapping program was used to scan for IDC QTL along the map. The IDC trait displayed continuous variation in the RIL population at each of the 3 or 4 time points. Both genotypic and environmental (year and field block) effects on IDC were significant. Estimated heritability for the IDC trait varied from 26 to 72%. The IDC scales were negatively correlated with the leaf soluble Fe content (r= -0.93) and positively correlated with the leaf total Fe content (r=0.94), demonstrating that the phenotypic variation in the IDC symptom was due to the lack of soluble Fe2+ in leaves. A framework linkage map was constructed with 164 markers and map consists of 36 linkage groups belonging to 20 soybean chromosomes. A total of 11 QTLs were associated with the IDC trait, with 5 of them being repeatable across the two years. Each QTL accounted for 7 to 16% of the total phenotypic variances. The parental line of wild soybean contributed the IDC-resistance allele to one QTL detectable in the two years. These 11 QTL were mapped on 8 chromosomes, with two QTL on chromosomes 18 co-located with the previously reported loci for the IDC trait in soybean. In summary, the IDC trait in the RIL population had a moderate level of heritability under the local field conditions and the genotypic variation was caused by the lack of soluble Fe in the leaf tissue. With the associated 11 putative QTLs, the alleles that enhance resistance to IDC distribute in both cultivated and wild soybean germplasm. The RIL population will be used to confirm the putative QTL in environments with different stress levels. The QTL repeatable in the two years could be used in breeding programs by backcrossing and marker-assisted selection techniques

    Transcriptional profiling of the effect of lipopolysaccharide (LPS) pretreatment in blood from probiotics-treated dairy cows

    Get PDF
    Probiotic supplements are beneficial for animal health and rumen function; and lipopolysaccharides (LPS) from gram negative bacteria have been associated with inflammatory diseases. In this study the transcriptional profile in whole blood collected from probiotics-treated cows was investigated in response to stimulation with lipopolysaccharides (LPS) in vitro. Microarray experiment was performed between LPS-treated and control samples using the Agilent one-color bovine v2 bovine (v2) 4x44K array slides. Global gene expression analysis identified 13,658 differentially expressed genes (fold change cutoff ≥ 2, P < 0.05), 3816 upregulated genes and 9842 downregulated genes in blood in response to LPS. Treatment with LPS resulted in increased expression of TLR4 (Fold change (FC) = 3.16) and transcription factor NFkB (FC = 5.4) and decreased the expression of genes including TLR1 (FC = −2.54), TLR3 (FC = −2.43), TLR10 (FC = −3.88), NOD2 (FC = −2.4), NOD1 (FC = −2.45) and pro-inflammatory cytokine IL1B (−3.27). The regulation of the genes involved in inflammation signaling pathway suggests that probiotics may stimulate the innate immune response of animal against parasitic and bacterial infections. We have provided a detailed description of the experimental design, microarray experiment and normalization and analysis of data which have been deposited into NCBI Gene Expression Omnibus (GEO): GSE75240

    Microarray analysis of the effect of Cowpea (Vigna unguiculata) phenolic extract in bovine peripheral blood

    No full text
    In this study, the effect of polyphenolic extracts from cowpea (Vigna unguiculata) on global gene expression in bovine peripheral blood was investigated. Blood collected from Holstein-Friesian cows (n = 10) was treated with 10 µg/mL of cowpea phenolic extract (CPE) and subsequently used for transcriptional profiling using the Agilent bovine (v2) 4 × 44 K array. Calculation of fold change in gene expression and pathway analysis was conducted using the GeneSpring GX software 13.0. Real-time quantitative PCR was performed to validate the microarray data. Phenolic extracts of cowpea impacted global gene expression and resulted in 3170 differentially expressed genes (p < .05); 1716 genes were upregulated and 1454 genes were downregulated. Exposure to CPE impacted 66 pathways (p < .05) including the Wnt signalling pathway, Toll-like receptor pathway, inflammation response pathway, MAPK cascade pathway, prostaglandin synthesis and regulation pathway, cell cycle pathway, insulin signalling pathway, and the adipogenesis pathway. Expression of immune markers such as CD40, CD68, Toll-like receptors, and Wnt signalling changed. Exposure to CPE modulated expression of genes associated with immunity and homeostasis. Transcriptional profiles of the response to polyphenols may aid in the design of targeted diets to influence animal production and health and thus requires further study

    A Review of the Neutrophil Extracellular Traps (NETs) from Cow, Sheep and Goat Models

    No full text
    This review provides insight into the importance of understanding NETosis in cows, sheep, and goats in light of the importance to their health, welfare and use as animal models. Neutrophils are essential to innate immunity, pathogen infection, and inflammatory diseases. The relevance of NETosis as a conserved innate immune response mechanism and the translational implications for public health are presented. Increased understanding of NETosis in ruminants will contribute to the prediction of pathologies and design of strategic interventions targeting NETs. This will help to control pathogens such as coronaviruses and inflammatory diseases such as mastitis that impact all mammals, including humans. Definition of unique attributes of NETosis in ruminants, in comparison to what has been observed in humans, has significant translational implications for one health and global food security, and thus warrants further study

    Effect of probiotic supplementation on growth and global gene expression in dairy cows

    No full text
    Use of probiotic supplements as a non-chemical approach to promote health has increased in animal production. The present study evaluated the effect of oral probiotic administration on growth and global gene expression profile in dairy cows. Lactating Holstein-Friesian cows received a daily dose (50 ml) of a commercial probiotic (containing Lactobacillus acidophilus, Saccharomyces cerevisiae, Enterococcus faecium, Aspergillus oryza and Bacillus subtilis) for 60 days. A microarray experiment was performed with blood collected at day-0 and day-60. Although probiotic supplementation had no effect on body weight, PCV and total protein concentration in plasma (P > 0.05), per cent lymphocyte count increased (P < 0.05), and per cent neutrophil count decreased (P < 0.05) in probiotic-treated animals. Gene expression analysis identified 10,859 differentially expressed genes, 1168 up-regulated and 9691 down-regulated genes, respectively, following probiotic treatment. Single experiment pathway analysis identified 87 bovine pathways impacted by probiotic treatment. These pathways included the Toll-like receptor (TLR), inflammation response and Wingless signalling pathways. Oral administration of probiotics to dairy cows had a systemic effect on global gene expression, such as on genes involved in immunity and homeostasis. The results of this study show that the utilization of probiotics in animal agriculture impacts genes important to dairy cow health and production
    corecore