63 research outputs found

    Structured Optical Materials Controlled by Light

    Get PDF
    Materials of which the optical response is determined by their structure are of much interest both for their fundamental properties and applications. Examples range from simple gratings to photonic crystals. Obtaining control over the optical properties is of crucial importance in this context, and it is often attempted by electro-optical effect or by using magnetic fields. In this paper, we introduce the use of light to switch and tune the optical response of a structured material, exploiting a physical deformation induced by light itself. In this new strategy, light drives an elastic reshaping, which leads to different spectral properties and hence to a change in the optical response. This is made possible by the use of liquid crystalline networks structured by Direct Laser Writing. As a proof of concept, a grating structure with sub-millisecond time-response is demonstrated for optical beam steering exploiting an optically induced reversible shape-change. Experimental observations are combined with finite-element modeling to understand the actuation process dynamics and to obtain information on how to tune the time and the power response of this technology. This optical beam steerer serves as an example for achieving full optical control of light in broad range of structured optical materials

    Historical first descriptions of Cajal-Retzius cells: from pioneer studies to current knowledge

    Get PDF
    Santiago Ramón y Cajal developed a great body of scientific research during the last decade of 19th century, mainly between 1888 and 1892, when he published more than 30 manuscripts. The neuronal theory, the structure of dendrites and spines, and fine microscopic descriptions of numerous neural circuits are among these studies. In addition, numerous cell types (neuronal and glial) were described by Ramón y Cajal during this time using this 'reazione nera' or Golgi method. Among these neurons were the special cells of the molecular layer of the neocortex. These cells were also termed Cajal cells or Retzius cells by other colleagues. Today these cells are known as Cajal-Retzius cells. From the earliest description, several biological aspects of these fascinating cells have been analyzed (e.g., cell morphology, physiological properties, origin and cellular fate, putative function during cortical development, etc). In this review we will summarize in a temporal basis the emerging knowledge concerning this cell population with specific attention the pioneer studies of Santiago Ramón y Cajal

    Photonic Microhand with Autonomous Action

    Get PDF
    Grabbing and holding objects at the microscale is a complex function, even for microscopic living animals. Inspired by the hominid-type hand, a microscopic equivalent able to catch microelements is engineered. This microhand is light sensitive and can be either remotely controlled by optical illumination or can act autonomously and grab small particles on the basis of their optical properties. Since the energy is delivered optically, without the need for wires or batteries, the artificial hand can be shrunk down to the micrometer scale. Soft material is used, in particular, a custom-made liquid-crystal network that is patterned by a photolithographic technique. The elastic reshaping properties of this material allow finger movement, using environmental light as the only energy source. The hand can be either controlled externally (via the light field), or else the conditions in which it autonomously grabs a particle in its vicinity can be created. This microrobot has the unique feature that it can distinguish between particles of different colors and gray levels. The realization of this autonomous hand constitutes a crucial element in the development of microscopic creatures that can perform tasks without human intervention and self-organized automation at the micrometer scale

    Multichannel remote polarization control enabled by nanostructured Liquid Crystalline Networks

    Get PDF
    In this article we demonstrate that a grating fabricated through nanoscale volumetric crosslinking of a liquid crystalline polymer enables remote polarization control over the diffracted channels. This functionality is a consequence of the responsivity of liquid crystal networks upon light stimuli. Tuning the photonic response of the device is obtained thanks to both a refractive index and a shape change of the grating elements induced by a molecular rearrangement under irradiation. In particular, the material anisotropy allows for nontrivial polarization state management over multiple beams. Absence of any liquid component and a time response down to 0.2 milliseconds make our device appealing in the fields of polarimetry and optical communications.Comment: 16 pages,8 figures, featured article in AL

    Light‐Powered Microrobots: Challenges and Opportunities for Hard and Soft Responsive Microswimmers

    Get PDF
    Worldwide research in microrobotics has exploded in the past two decades, leading to the development of microrobots propelled in various manners. Despite significant advances in the field and successful demonstration of a wide range of applications, microrobots have yet to become the preferred choice outside a laboratory environment. After introducing available microrobotic propulsion and control mechanisms, microrobots that are manufactured and powered by light are focused herein. Referring to pioneering works and recent interesting examples, light is presented not only as a fabrication tool, by means of twophoton polymerization direct laser writing, but also as an actuator for microrobots in both hard and soft stimuli–responsive polymers. In this scenario, a number of challenges that yet prevent polymeric light-powered microrobots from reaching their full potential are identified, whereas potential solutions to overcome said challenges are suggested. As an outlook, a number of real-world applications that light-powered microrobots should be particularly suited for are mentioned, together with the advances needed for them to achieve such purposes. An interdisciplinary approach combining materials science, microfabrication, photonics, and data science should be conducive to the next generation of microrobots and will ultimately foster the translation of microrobotic applications into the real world

    Quantifying the Sensitivity and Unclonability of Optical Physical Unclonable Functions

    Get PDF
    Due to their unmatched entropy, complexity, and security level, optical physical unclonable functions (PUFs) currently receive a lot of interest in the literature.Despite the large body of existing works, herein, one of their core features in detail is studied, namely, their physical unclonability. This article tackles this fundamental and yet largely unaddressed issue. In simulations and/or experiments, the sensitivity of diffraction-based optical responses is investigated with respect to various small alterations such as variation in position, size, and number of the scatterers, as well as perturbations in the spatial alignment between the PUF and the measurement apparatus. The analysis focuses on 2Doptical PUFs because of their relevance in integrated applications and the need to reply to security concerns that can be raised when the physical structure of the geometry is accessible. Among the results of this study, the sensitivity analysis shows that a positional perturbation of scatterers on the order of 30 nm, that is,far below the wavelength of the probing laser light of 632 nm wavelength, is sufficient to invalidate the PUF response and thus detect forgery attempt. These results support and quantify the high adversarial efforts required to clone optical PUFs, even for 2D layouts

    Balance between Regulatory T and Th17 Cells in Systemic Lupus Erythematosus: The Old and the New

    Get PDF
    Pathogenic mechanisms underlying the development of systemic lupus erythematosus (SLE) are very complex and not yet entirely clarified. However, the pivotal role of T lymphocytes in the induction and perpetuation of aberrant immune response is well established. Among T cells, IL-17 producing T helper (Th17) cells and regulatory T (Treg) cells represent an intriguing issue to be addressed in SLE pathogenesis, since an imbalance between the two subsets has been observed in the course of the disease. Treg cells appear to be impaired and therefore unable to counteract autoreactive T lymphocytes. Conversely, Th17 cells accumulate in target organs contributing to local IL-17 production and eventually tissue damage. In this setting, targeting Treg/Th17 balance for therapeutic purposes may represent an intriguing and useful tool for SLE treatment in the next future. In this paper, the current knowledge about Treg and Th17 cells interplay in SLE will be discussed

    Dynamically Tunable Optical Cavities with Embedded Nematic Liquid Crystalline Networks

    Get PDF
    Tunable metal–insulator–metal (MIM) Fabry–P\ue9rot (FP) cavities that can dynamically control light enable novel sensing, imaging\ua0and display applications. However, the realization of dynamic cavities incorporating stimuli-responsive materials poses a significant engineering challenge. Current approaches rely on refractive index modulation and suffer from low dynamic tunability, high losses, and limited spectral ranges, and require liquid and hazardous materials for operation. To overcome these challenges, a new tuning mechanism employing reversible mechanical adaptations of a polymer network is proposed, and dynamic tuning of optical resonances is demonstrated. Solid-state temperature-responsive optical coatings are developed by preparing a monodomain nematic liquid crystalline network (LCN) and are incorporated between metallic mirrors to form active optical microcavities. LCN microcavities offer large, reversible and highly linear spectral tuning of FP resonances reaching wavelength-shifts up to 40\ua0nm via thermomechanical actuation while featuring outstanding repeatability and precision over more than 100 heating–cooling cycles. This degree of tunability allows for reversible switching between the reflective and the absorbing states of the device over the entire visible and near-infrared spectral regions, reaching large changes in reflectance with modulation efficiency ΔR\ua0=\ua079%
    corecore