3 research outputs found

    Cerebrolysin recovers diaphragmatic function and reduces injury-associated astrogliosis following a cervical spinal cord hemi-section injury in rats

    No full text
    Abstract Background Spinal cord injury (SCI) is widely considered the most disastrous medical condition. With no available treatment to date, SCI continues to cause disabilities to the patients and affect their own and their caregivers' quality of life. Cerebrolysin (CBL) is a neuropeptide preparation derived from purified brain proteins with suggested neuroprotective and neurotrophic properties. CBL showed earlier the ability to target multiple pathways that helped in the improvement of the recovery following different groups of neurological diseases and injuries, including ischemic stroke, traumatic brain injuries, and even neurodegenerative diseases. In the current study, the neuroprotective effect of CBL following a SCI is called into question using a rat model of spinal cord cervical hemi-section validated earlier by our lab and others. Using 32 rats divided into four groups randomly, CBL treatment was implemented for either 7 or 21 days duration, following the cervical spinal cord hemi-section. Results Following the CBL treatment, rats with cervical cord hemi-section showed functional improvement of diaphragmatic muscle as recorded by electromyography (EMG). In addition, the histopathological assessment of the spinal cord showed improved neuronal viability and reduced astrogliosis at the site of the injury compared to the non-treated group. 21-day treatment showed significant improvement when compared to the shorter 7-day regimen. Conclusion Our data suggest that CBL is capable of protecting and regenerating anterior horn motor neurons with functional recovery of diaphragmatic muscle functions in rats, suggesting the potential use of CBL for future regenerative and neuroprotective therapy following SCI

    Anti-proliferative activity of RIHMS-Qi-23 against MCF-7 breast cancer cell line is through inhibition of cell proliferation and senescence but not inhibition of targeted kinases

    No full text
    Abstract Background Breast cancer is the most common malignancy globally, and is considered a major cause of cancer-related death. Tremendous effort is exerted to identify an optimal anticancer drug with limited side effects. The quinoline derivative RIMHS-Qi-23 had a wide-spectrum antiproliferative activity against various types of cancer cells. Methods In the current study, the effect of RIMHS-Qi-23 was tested on MCF-7 breast cancer cell line to evaluate its anticancer efficacy in comparison to the reference compound doxorubicin. Results Our data suggest an anti-proliferative effect of RIMHS-Qi-23 on the MCF-7 cell line with superior potency and selectivity compared to doxorubicin. Our mechanistic study suggested that the anti-proliferative effect of RIMHS-Qi-23 against MCF-7 cell line is not through targeted kinase inhibition but through other molecular machinery targeting cell proliferation and senescence such as cyclophlin A, p62, and LC3. Conclusion RIMHS-Qi-23 is exerting an anti-proliferative effect that is more potent and selective than doxorubicin

    Organotypic slice culture model demonstrates inter-neuronal spreading of alpha-synuclein aggregates

    No full text
    Here we describe the use of an organotypic hippocampal slice model for studying α-synuclein aggregation and inter-neuronal spreading initiated by microinjection of pre-formed α-synuclein fibrils (PFFs). PFF injection at dentate gyrus (DG) templates the formation of endogenous α-synuclein aggregates in axons and cell bodies of this region that spread to CA3 and CA1 regions. Aggregates are insoluble and phosphorylated at serine-129, recapitulating Lewy pathology features found in Parkinson's disease and other synucleinopathies. The model was found to favor anterograde spreading of the aggregates. Furthermore, it allowed development of slices expressing only serine-129 phosphorylation-deficient human α-synuclein (S129G) using an adeno-associated viral (AAV) vector in α-synuclein knockout slices. The processes of aggregation and spreading of α-synuclein were thereby shown to be independent of phosphorylation at serine-129. We provide methods and highlight crucial steps for PFF microinjection and characterization of aggregate formation and spreading. Slices derived from genetically engineered mice or manipulated using viral vectors allow testing of hypotheses on mechanisms involved in the formation of α-synuclein aggregates and their prion-like spreading
    corecore