4 research outputs found

    One-Year Clinical Outcomes of Minimal-Invasive Dorsal Percutaneous Fixation of Thoracolumbar Spine Fractures

    No full text
    Introduction: Minimal-invasive instrumentation techniques have become a workhorse in spine surgery and require constant clinical evaluations. We sought to analyze patient-reported outcome measures (PROMs) and clinicopathological characteristics of thoracolumbar fracture stabilizations utilizing a minimal-invasive percutaneous dorsal screw-rod system. Methods: We included all patients with thoracolumbar spine fractures who underwent minimal-invasive percutaneous spine stabilization in our clinics since inception and who have at least 1 year of follow-up data. Clinical characteristics (length of hospital stay (LOS), operation time (OT), and complications), PROMs (preoperative (pre-op), 3-weeks postoperative (post-op), 1-year postoperative: eq5D, COMI, ODI, NRS back pain), and laboratory markers (leucocytes, c-reactive protein (CRP)) were analyzed, finding significant associations between these study variables and PROMs. Results: A total of 68 patients (m: 45.6%; f: 54.4%; mean age: 76.9 ± 13.9) were included. The most common fracture types according to the AO classification were A3 (40.3%) and A4 (40.3%), followed by B2 (7.46%) and B1 (5.97%). The Median American Society of Anesthesiologists (ASA) score was 3 (range: 1–4). Stabilized levels ranged from TH4 to L5 (mean number of targeted levels: 4.25 ± 1.4), with TH10-L2 (12/68) and TH11-L3 (11/68) being the most frequent site of surgery. Mean OT and LOS were 92.2 ± 28.2 min and 14.3 ± 6.9 days, respectively. We observed 9/68 complications (13.2%), mostly involving screw misalignments and loosening. CRP increased from 24.9 ± 33.3 pre-op to 34.8 ± 29.9 post-op (p < 0.001), whereas leucocyte counts remained stable. All PROMs showed a marked significant improvement for both 3-week and 1-year evaluations compared to the preoperative situation. Interestingly, we did not find an impact of OT, LOS, lab markers, complications, and other clinical characteristics on PROMs. Notably, a higher number of stabilized levels did not affect PROMs. Conclusions: Minimal-invasive stabilization of thoracolumbar fractures utilizing a dorsal percutaneous approach resulted in significant PROM outcome improvements, although we observed a complication rate of 13.2% for up to 1 year of follow-up. PROMs were not significantly associated with clinicopathological characteristics, technique-related variables, or the number of targeted levels

    Performance of Artificial Intelligence-Based Algorithms to Predict Prolonged Length of Stay after Lumbar Decompression Surgery

    No full text
    Background: Decompression of the lumbar spine is one of the most common procedures performed in spine surgery. Hospital length of stay (LOS) is a clinically relevant metric used to assess surgical success, patient outcomes, and socioeconomic impact. This study aimed to investigate a variety of machine learning and deep learning algorithms to reliably predict whether a patient undergoing decompression of lumbar spinal stenosis will experience a prolonged LOS. Methods: Patients undergoing treatment for lumbar spinal stenosis with microsurgical and full-endoscopic decompression were selected within this retrospective monocentric cohort study. Prolonged LOS was defined as an LOS greater than or equal to the 75th percentile of the cohort (normal versus prolonged stay; binary classification task). Unsupervised learning with K-means clustering was used to find clusters in the data. Hospital stay classes were predicted with logistic regression, RandomForest classifier, stochastic gradient descent (SGD) classifier, K-nearest neighbors, Decision Tree classifier, Gaussian Naive Bayes (GaussianNB), support vector machines (SVM), a custom-made convolutional neural network (CNN), multilayer perceptron artificial neural network (MLP), and radial basis function neural network (RBNN) in Python. Prediction accuracy and area under the curve (AUC) were calculated. Feature importance analysis was utilized to find the most important predictors. Further, we developed a decision tree based on the Chi-square automatic interaction detection (CHAID) algorithm to investigate cut-offs of predictors for clinical decision-making. Results: 236 patients and 14 feature variables were included. K-means clustering separated data into two clusters distinguishing the data into two patient risk characteristic groups. The algorithms reached AUCs between 67.5% and 87.3% for the classification of LOS classes. Feature importance analysis of deep learning algorithms indicated that operation time was the most important feature in predicting LOS. A decision tree based on CHAID could predict 84.7% of the cases. Conclusions: Machine learning and deep learning algorithms can predict whether patients will experience an increased LOS following lumbar decompression surgery. Therefore, medical resources can be more appropriately allocated to patients who are at risk of prolonged LOS

    Artificial Intelligence-Driven Prediction Modeling and Decision Making in Spine Surgery Using Hybrid Machine Learning Models

    No full text
    Healthcare systems worldwide generate vast amounts of data from many different sources. Although of high complexity for a human being, it is essential to determine the patterns and minor variations in the genomic, radiological, laboratory, or clinical data that reliably differentiate phenotypes or allow high predictive accuracy in health-related tasks. Convolutional neural networks (CNN) are increasingly applied to image data for various tasks. Its use for non-imaging data becomes feasible through different modern machine learning techniques, converting non-imaging data into images before inputting them into the CNN model. Considering also that healthcare providers do not solely use one data modality for their decisions, this approach opens the door for multi-input/mixed data models which use a combination of patient information, such as genomic, radiological, and clinical data, to train a hybrid deep learning model. Thus, this reflects the main characteristic of artificial intelligence: simulating natural human behavior. The present review focuses on key advances in machine and deep learning, allowing for multi-perspective pattern recognition across the entire information set of patients in spine surgery. This is the first review of artificial intelligence focusing on hybrid models for deep learning applications in spine surgery, to the best of our knowledge. This is especially interesting as future tools are unlikely to use solely one data modality. The techniques discussed could become important in establishing a new approach to decision-making in spine surgery based on three fundamental pillars: (1) patient-specific, (2) artificial intelligence-driven, (3) integrating multimodal data. The findings reveal promising research that already took place to develop multi-input mixed-data hybrid decision-supporting models. Their implementation in spine surgery may hence be only a matter of time
    corecore