5 research outputs found
Starch based coatings with thyme essential oil for fruit preservation
Tesis por compendio[ES] En esta Tesis, se han analizado diferentes estrategias para adaptar las formulaciones de almidón con el fin de obtener recubrimientos útiles en la conservación poscosecha de frutas.
El almidón se sustituyó parcialmente por gomas de origen microbiano (xantano, gelano y pululano) para mejorar las propiedades funcionales de las películas. La adición de gelano a la matriz de almidón, redujo su capacidad de adsorción de agua y la permeabilidad al vapor de agua y oxígeno. Tuvo un efecto positivo en las propiedades mecánicas, mejorando su resistencia a la rotura y previniendo la retrogradación. La goma xantana aumentó la resistencia a la rotura de las películas de almidón, pero no redujo su capacidad de adsorción de agua y la permeabilidad al vapor de agua. La sustitución del almidón por un 10 o 20% de gelano, podría ser una buena estrategia para obtener películas con propiedades más adecuadas con fines de envasado/recubrimiento de alimentos.
Se analizaron películas mezcla de almidón-gelano con aceite esencial de tomillo (EO), con el objetivo de proporcionar actividad antifúngica a las formulaciones. El aceite se incorporó mediante emulsificación directa o encapsulado en liposomas de lecitina. Las películas mostraron un efecto antifúngico en las pruebas in vitro contra A. alternata y B. cinerea. La encapsulación del EO promovió una mayor retención del aceite, mejorando su actividad antifúngica, siendo éstas más efectivas contra B. cinerea que contra A. alternata. Una mayor proporción de almidón en el film dio lugar a mayor crecimiento fúngico a baja concentración del compuesto activo. Todas las películas exhibieron alta capacidad de barrera al oxígeno. La lecitina mejoró la capacidad de barrera al vapor de agua y redujo la rigidez, la resistencia a la rotura y la extensibilidad. Las películas con EO encapsulado, con una proporción de almidón-gelano de 8:2, fueron las más efectivas para controlar el crecimiento fúngico.
Para aplicar las formulaciones de almidón-gelano como recubrimientos, se analizaron las propiedades superficiales de distintas frutas (manzana, tomate y caqui), y el coeficiente extensibilidad de las formulaciones sobre la superficie de la frutas, en función de la concentración de Tween 85. Las pieles de las frutas evaluadas se comportaron como superficies de baja energía. La adición de Tween 85 a las muestras sin EO, tuvo un efecto positivo en el ángulo de contacto y la tensión superficial. Sin embargo, cuando contenían EO, emulsionado o encapsulado en lecitina, el surfactante ejerció un efecto negativo en estas propiedades, dependiendo de su concentración. Las formulaciones con EO, emulsionado o encapsulado, no requirieron surfactante para mejorar su extensibilidad, mientras que la adición de Tween 85 a una concentración de 5x104 mg/L, mejoró notablemente esta propiedad en formulaciones S:G sin EO.
Recubrimientos a base de almidón-gelano, con o sin EO emulsionado o encapsulado en liposomas de lecitina, fueron aplicados en manzanas y caquis. Los recubrimientos no redujeron la pérdida de peso en las manzanas, pero evitaron la pérdida de agua en los caquis. No se observó un efecto significativo de los recubrimientos en las tasas de respiración y el cociente de respiración de los caquis, mientras que estos parámetros aumentaron en manzanas. En los ensayos in vivo, los recubrimientos sin lecitina redujeron la incidencia y severidad de la mancha negra por A. alternata en caquis, y la severidad del moho gris por B. cinerea en manzanas. A pesar de su acción antifúngica in vitro, el EO no ejerció un efecto antifúngico adicional en la fruta. Esto podría explicarse por las interacciones particulares entre los componentes del recubrimiento, la superficie de la fruta y el patógeno. Los recubrimientos a base de almidón-gelano sin lecitina ni EO podrían aplicarse en caquis para controlar la pérdida de peso y reducir la incidencia de A. alternata.[CA] En esta Tesi, s'han analitzat diferents estratègies per a adaptar les formulacions de midó a fi d'obtenir recobriments útils per a la conservació postcollita de fruites.
El midó es va substituir parcialment per gomes d'origen microbià (xantano, gelano i pululano) per a millorar les propietats funcionals de les pel¿lícules. L'addició de gelano a les pel¿lícules de midó, va reduir la seua capacitat d'adsorció d'aigua. També va tindre un efecte positiu en les propietats mecàniques, i va millorar la seua resistència a la ruptura i va prevenir els fenòmens de retrogradació. La goma de xantano també va augmentar la resistència a la ruptura de les pel¿lícules de midó, però no va reduir la seua capacitat d'adsorció d'aigua i la permeabilitat al vapor d'aigua. La substitució del midó per un 10 o 20% de gelano, podria ser una bona estratègia per a obtenir pel¿lícules amb propietats més adequades per al envasat/recobriment d'aliments.
S'analitzaren les pel¿lícules mescla de midó-gelano amb oli essencial de timó (EO), amb l'objectiu de proporcionar activitat antifúngica a les formulacions. L'oli es va incorporar mitjançant emulsificació directa o encapsulat en liposomes de lecitina. Estes pel¿lícules van mostrar un efecte antifúngic en les proves in vitro contra A. alternata i B. cinerea. L'encapsulació de l'EO en els liposomes de lecitina va promoure una major retenció de l'oli i va millorar la seua activitat antifúngica, sent estes més efectives contra B. cinerea que contra A. alternata. En les formulacions amb una major proporció de midó amb baix contingut en compost actiu va haver un major creixement fúngic. Totes les pel¿lícules van exhibir alta capacitat de barrera a l'oxigen. La presència de lecitina va millorar la capacitat de barrera al vapor d'aigua i va reduir la rigidesa, la resistència a la ruptura i l'extensibilitat. Les pel¿lícules amb EO encapsulat, amb una proporció de midó-gelano 8: 2, van ser les més efectives per a controlar el creixement fúngic.
Amb l'objectiu d'aplicar les formulacions de midó-gelano com a recobriments, es van analitzar les propietats superficials de distintes fruites (poma, tomaca i caqui), i el coeficient d'extensibilitat d'estes formulacions sobre la superfície de la fruita, en funció de la concentració de Tween 85. Les pells de les fruites avaluades es van comportar com a superfícies de baixa energia. L'addició de Tween 85 a les formulacions sense EO, va tenir un efecte positiu en els angles de contacte i la tensió superficial. En presència de l'EO, emulsionat o encapsulat en liposomes de lecitina, el tensioactiu va exercir un efecte negatiu en estos valors, depenent de la seua concentració. Els recobriments amb EO, emulsionat o encapsulat, no van requerir tensioactiu per a millorar la seua extensibilitat, mentre que l'addició de Tween 85 a una concentració de 5x104 mg/L, va millorar notablement esta propietat en les formulacions sense EO.
Recobriments a base de midó-gelano, amb o sense l'agregat d'EO emulsionat o encapsulat en liposomes, van ser aplicats en pomes i caquis.. Els recobriments no van reduir la pèrdua de pes en les pomes, però van evitar la pèrdua d'aigua en els caquis. No es va observar un efecte significatiu dels recobriments en les taxes de respiració i el quocient de respiració dels caquis, mentre que les taxes i el quocient de respiració van augmentar en les pomes. En els assajos in vivo, els recobriments sense lecitina van reduir la incidència i severitat de la taca negra per A. alternata en els caquis, i la severitat de la floridura grisa per B. cinerea en les pomes. No obstant això, la incorporació de l'EO no va exercir un efecte antifúngic addicional en la fruita. Açò podria explicar-se per les interaccions particulars entre els components del recobriment, la superfície de la fruita i el patogen. Els recobriments a base de midó-gelano sense lecitina o EO de timó podrien aplicar-se en caqui[EN] In this Thesis, different strategies have been analysed to tailor starch formulations for the purposes of obtaining useful coatings in postharvest fruit preservation.
Starch was partially substituted by microbial gums (xanthan, gellan, and pullulan) in order to improve film functional properties. Moisture sorption capacity and water vapour and oxygen permeability were reduced by the presence of gellan gum in the starch films. It also had a positive effect on the tensile properties, enhancing the films' strength and resistance to break and preventing retrogradation phenomena. Xanthan gum increased the tensile strength of the starch films, but did not reduce their water sorption capacity and water vapour permeability. Functional properties were not notably improved by the addition of pullulan. Then, 10 and 20 % starch could be substituted by gellan gum to obtain films with more adequate properties for food packaging/coating purposes.
Starch-gellan blend films containing thyme essential oil (EO) were also studied in order to provide antifungal activity to the formulations. This was incorporated either by direct emulsification or encapsulated in lecithin liposomes. These films exhibited antifungal effect in in vitro tests against A. alternata and B. cinerea. The encapsulation of the EO in lecithin liposomes allowed for greater EO retention in the films, enhancing their antifungal activity, which were more effective against B. cinerea than against A. alternata. The antifungal action was slightly affected by the polymer matrix composition. Thus, the greatest starch ratio enhanced the fungal growth when the content of the active compound was low. All the films exhibited high oxygen barrier capacity. The presence of lecithin enhanced their water vapour barrier capacity and reduced the film stiffness, resistance to break and extensibility. The films with lecithin-encapsulated EO, with a starch-gellan ratio of 8:2, were the most effective at controlling fungal growth.
In order to apply these starch-gellan formulations as fruit coatings, the surface properties of apple, tomato and persimmon, and the spreadability coefficient of these liquid formulations on the fruit surface, were analysed as a function of the concentration of Tween 85, as surfactant. The fruit skins behaved as low-energy surfaces. The values of the contact angles and surface tension of EO-free formulations were positively influenced by the addition of Tween 85. However, in the presence of emulsified or lecithin-encapsulated thyme EO, the surfactant exerted a negative effect, depending on its concentration. Coating-forming systems containing emulsified or encapsulated EO did not require surfactant to improve their already good spreadability, while Tween 85 at 5x104 mg/L notably improved this property in EO-free formulations.
Starch-gellan coatings, containing or not emulsified or lecithin-encapsulated EO, were applied on apples and persimmons. Coatings did not reduce the weight loss in apples, but they prevented water loss in persimmons. In contrast, no significant effect of the coatings was observed on respiration rates and respiration quotient of persimmons, whereas they increased the respiration rates and quotient in apples. Coatings did not affect the changes in fruit firmness either in apples or persimmons. In the in vivo assays, the coatings without lecithin reduced the incidence and severity of black spot caused by A. alternata in persimmons, and the severity of grey mould caused by B. cinerea in apples. The incorporation of EO did not exert an additional antifungal effect on the fruit and seemed to exert a negative effect on some other fruit quality attributes. This could be explained by the particular interactions of the coating components, fruit surface and pathogen. Starch-gellan coatings without lecithin or thyme EO could be used in persimmons to control weight loss and reduce the incidence of infections caused by A. alternata.This work has been founded by the “Ministerio de Economía y Competitividad” of Spain,
through the Project AGL2016-76699-R and the “Conselleria de Educación, Investigación,
Cultura y Deporte de la Generalitat Valenciana” trough the Santiago Grisolía grant
GRISOLIA/2015/001.Sapper, MI. (2019). Starch based coatings with thyme essential oil for fruit preservation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124342TESISCompendi
Starch-Based Coatings for Preservation of Fruits and Vegetables
[EN] Considerable research has focused on the control of the physiological activity of fruits and vegetables in postharvest conditions as well as microbial decay. The use of edible coatings (ECs) carrying active compounds (e.g., antimicrobials) represents an alternative preservation technology since they can modify the internal gas composition by creating a modified atmosphere through the regulation of the gas exchange (oxygen, carbon dioxide, volatiles) while also limiting water transfer. Of the edible polymers able to form coating films, starch exhibits several advantages, such as its ready availability, low cost and good filmogenic capacity, forming colourless and tasteless films with high oxygen barrier capacity. Nevertheless, starch films are highly water sensitive and exhibit limited water vapour barrier properties and mechanical resistance. Different compounds, such as plasticizers, surfactants, lipids or other polymers, have been incorporated to improve the functional properties of starch-based films/coatings. This paper reviews the starch-based ECs used to preserve the main properties of fruits and vegetables in postharvest conditions as well as the different factors affecting the coating efficiency, such as surface properties or incorporation of antifungal compounds. The great variability in the plant products requires specific studies to optimize the formulation of coating forming products.The authors acknowledge the financial support from the Ministerio de Economia y Competitividad (MINECO) of Spain, through the projects and AGL2016-76699-R and RTA2015-00037-C02. Mayra Sapper thanks the Conselleria de Educacion, Investigacion, Cultura y Deporte de la Comunitat Valenciana for the Santiago Grisolia grant GRISOLIA/2015/001.Sapper, MI.; Chiralt, A. (2018). Starch-Based Coatings for Preservation of Fruits and Vegetables. Coatings. 8(5). https://doi.org/10.3390/coatings8050152S85Palou, L., Valencia-Chamorro, S., & Pérez-Gago, M. (2015). Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. Coatings, 5(4), 962-986. doi:10.3390/coatings5040962Park, H. J. (1999). Development of advanced edible coatings for fruits. Trends in Food Science & Technology, 10(8), 254-260. doi:10.1016/s0924-2244(00)00003-0Karaca, H., Pérez-Gago, M. B., Taberner, V., & Palou, L. (2014). Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose–lipid composite edible coatings for plums. International Journal of Food Microbiology, 179, 72-79. doi:10.1016/j.ijfoodmicro.2014.03.027Fagundes, C., Palou, L., Monteiro, A. R., & Pérez-Gago, M. B. (2015). Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes. Scientia Horticulturae, 193, 249-257. doi:10.1016/j.scienta.2015.07.027Raybaudi-Massilia, R., Mosqueda-Melgar, J., Soliva-Fortuny, R., & Martín-Belloso, O. (2016). Combinational Edible Antimicrobial Films and Coatings. Antimicrobial Food Packaging, 633-646. doi:10.1016/b978-0-12-800723-5.00052-8Mariniello, L., Giosafatto, C. V. L., Di Pierro, P., Sorrentino, A., & Porta, R. (2010). Swelling, Mechanical, and Barrier Properties of Albedo-Based Films Prepared in the Presence of Phaseolin Cross-Linked or Not by Transglutaminase. Biomacromolecules, 11(9), 2394-2398. doi:10.1021/bm100566jKang, H.-J., Kim, S.-J., You, Y.-S., Lacroix, M., & Han, J. (2013). Inhibitory effect of soy protein coating formulations on walnut (Juglans regia L.) kernels against lipid oxidation. LWT - Food Science and Technology, 51(1), 393-396. doi:10.1016/j.lwt.2012.10.019Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2010). Development of Edible Films and Coatings with Antimicrobial Activity. Food and Bioprocess Technology, 4(6), 849-875. doi:10.1007/s11947-010-0434-1Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095-1107. doi:10.1016/j.ijbiomac.2017.11.097Mehyar, G. F., Al-Qadiri, H. M., & Swanson, B. G. (2012). Edible Coatings and Retention of Potassium Sorbate on Apples, Tomatoes and Cucumbers to Improve Antifungal Activity During Refrigerated Storage. Journal of Food Processing and Preservation, 38(1), 175-182. doi:10.1111/j.1745-4549.2012.00762.xLuchese, C. L., Spada, J. C., & Tessaro, I. C. (2017). Starch content affects physicochemical properties of corn and cassava starch-based films. Industrial Crops and Products, 109, 619-626. doi:10.1016/j.indcrop.2017.09.020Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148. doi:10.1016/j.foodhyd.2016.09.009Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. Journal of Food Engineering, 110(2), 208-213. doi:10.1016/j.jfoodeng.2011.05.034MILLER, K. S., UPADHYAYA, S. K., & KROCHTA, J. M. (2008). Permeability of d-Limonene in Whey Protein Films. Journal of Food Science, 63(2), 244-247. doi:10.1111/j.1365-2621.1998.tb15718.xFalguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. doi:10.1016/j.tifs.2011.02.004Lin, D., & Zhao, Y. (2007). Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60-75. doi:10.1111/j.1541-4337.2007.00018.xRojas-Graü, M. A., Tapia, M. S., Rodríguez, F. J., Carmona, A. J., & Martin-Belloso, O. (2007). Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocolloids, 21(1), 118-127. doi:10.1016/j.foodhyd.2006.03.001Acevedo-Fani, A., Soliva-Fortuny, R., & Martín-Belloso, O. (2017). Nanoemulsions as edible coatings. Current Opinion in Food Science, 15, 43-49. doi:10.1016/j.cofs.2017.06.002ZISMAN, W. A. (1964). Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution. Contact Angle, Wettability, and Adhesion, 1-51. doi:10.1021/ba-1964-0043.ch001Dann, J. . (1970). Forces involved in the adhesive process. Journal of Colloid and Interface Science, 32(2), 302-320. doi:10.1016/0021-9797(70)90054-8Lima, Á. M., Cerqueira, M. A., Souza, B. W. S., Santos, E. C. M., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2010). New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits – Influence on fruits gas transfer rate. Journal of Food Engineering, 97(1), 101-109. doi:10.1016/j.jfoodeng.2009.09.021Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Souza, M. P., Teixeira, J. A., & Vicente, A. A. (2009). Physical properties of edible coatings and films made with a polysaccharide from Anacardium occidentale L. Journal of Food Engineering, 95(3), 379-385. doi:10.1016/j.jfoodeng.2009.05.020Cerqueira, M. A., Lima, Á. M., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2009). Suitability of novel galactomannans as edible coatings for tropical fruits. Journal of Food Engineering, 94(3-4), 372-378. doi:10.1016/j.jfoodeng.2009.04.003Casariego, A., Souza, B. W. S., Vicente, A. A., Teixeira, J. A., Cruz, L., & Díaz, R. (2008). Chitosan coating surface properties as affected by plasticizer, surfactant and polymer concentrations in relation to the surface properties of tomato and carrot. Food Hydrocolloids, 22(8), 1452-1459. doi:10.1016/j.foodhyd.2007.09.010Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63-70. doi:10.1016/j.postharvbio.2006.11.015Choi, W. Y., Park, H. J., Ahn, D. J., Lee, J., & Lee, C. Y. (2002). Wettability of Chitosan Coating Solution on’Fuji’ Apple Skin. Journal of Food Science, 67(7), 2668-2672. doi:10.1111/j.1365-2621.2002.tb08796.xHershko, V., & Nussinovitch, A. (1998). The Behavior of Hydrocolloid Coatings on Vegetative Materials. Biotechnology Progress, 14(5), 756-765. doi:10.1021/bp980075vHagenmaier, R. D., & Baker, R. A. (1993). Reduction in gas exchange of citrus fruit by wax coatings. Journal of Agricultural and Food Chemistry, 41(2), 283-287. doi:10.1021/jf00026a029Versino, F., Lopez, O. V., Garcia, M. A., & Zaritzky, N. E. (2016). Starch-based films and food coatings: An overview. Starch - Stärke, 68(11-12), 1026-1037. doi:10.1002/star.201600095Acosta, S., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135-143. doi:10.1016/j.foodhyd.2015.03.015Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762-769. doi:10.1016/j.foodres.2009.02.026Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075García, M. A., Martino, M. N., & Zaritzky, N. E. (1998). Plasticized Starch-Based Coatings To Improve Strawberry (Fragaria×Ananassa) Quality and Stability. Journal of Agricultural and Food Chemistry, 46(9), 3758-3767. doi:10.1021/jf980014cSaberi, B., Golding, J. B., Marques, J. R., Pristijono, P., Chockchaisawasdee, S., Scarlett, C. J., & Stathopoulos, C. E. (2018). Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’ oranges. Postharvest Biology and Technology, 137, 9-20. doi:10.1016/j.postharvbio.2017.11.003Cháfer, M., Sánchez-González, L., González-Martínez, C., & Chiralt, A. (2012). Fungal Decay and Shelf Life of Oranges Coated With Chitosan and Bergamot, Thyme, and Tea Tree Essential Oils. Journal of Food Science, 77(8), E182-E187. doi:10.1111/j.1750-3841.2012.02827.xNawab, A., Alam, F., & Hasnain, A. (2017). Mango kernel starch as a novel edible coating for enhancing shelf- life of tomato ( Solanum lycopersicum ) fruit. International Journal of Biological Macromolecules, 103, 581-586. doi:10.1016/j.ijbiomac.2017.05.057Vieira, J. M., Flores-López, M. L., de Rodríguez, D. J., Sousa, M. C., Vicente, A. A., & Martins, J. T. (2016). Effect of chitosan– Aloe vera coating on postharvest quality of blueberry ( Vaccinium corymbosum ) fruit. Postharvest Biology and Technology, 116, 88-97. doi:10.1016/j.postharvbio.2016.01.011Sabbah, M., Di Pierro, P., Giosafatto, C., Esposito, M., Mariniello, L., Regalado-Gonzales, C., & Porta, R. (2017). Plasticizing Effects of Polyamines in Protein-Based Films. International Journal of Molecular Sciences, 18(5), 1026. doi:10.3390/ijms18051026Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109(3), 372-379. doi:10.1016/j.jfoodeng.2011.11.019Perdones, Á., Chiralt, A., & Vargas, M. (2016). Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloids, 57, 271-279. doi:10.1016/j.foodhyd.2016.02.006Sagnelli, D., Hooshmand, K., Kemmer, G., Kirkensgaard, J., Mortensen, K., Giosafatto, C., … Blennow, A. (2017). Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative. International Journal of Molecular Sciences, 18(10), 2075. doi:10.3390/ijms18102075Romani, V. P., Hernández, C. P., & Martins, V. G. (2018). Pink pepper phenolic compounds incorporation in starch/protein blends and its potential to inhibit apple browning. Food Packaging and Shelf Life, 15, 151-158. doi:10.1016/j.fpsl.2018.01.003Chiumarelli, M., Pereira, L. M., Ferrari, C. C., Sarantópoulos, C. I. G. L., & Hubinger, M. D. (2010). Cassava Starch Coating and Citric Acid to Preserve Quality Parameters of Fresh-Cut «Tommy Atkins» Mango. Journal of Food Science, 75(5), E297-E304. doi:10.1111/j.1750-3841.2010.01636.xOrtega-Toro, R., Collazo-Bigliardi, S., Roselló, J., Santamarina, P., & Chiralt, A. (2017). Antifungal starch-based edible films containing Aloe vera. Food Hydrocolloids, 72, 1-10. doi:10.1016/j.foodhyd.2017.05.023Botelho, L. N. S., Rocha, D. A., Braga, M. A., Silva, A., & de Abreu, C. M. P. (2016). Quality of guava cv. ‘Pedro Sato’ treated with cassava starch and cinnamon essential oil. Scientia Horticulturae, 209, 214-220. doi:10.1016/j.scienta.2016.06.012De Aquino, A. B., Blank, A. F., & de Aquino Santana, L. C. L. (2015). Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chemistry, 171, 108-116. doi:10.1016/j.foodchem.2014.08.077Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I., & Mei, L. H. I. (2015). Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology, 109, 57-64. doi:10.1016/j.postharvbio.2015.05.015Razak, A. S., & Lazim, A. M. (2015). Starch-based edible film with gum arabic for fruits coating. doi:10.1063/1.4931299Das, D. K., Dutta, H., & Mahanta, C. L. (2013). Development of a rice starch-based coating with antioxidant and microbe-barrier properties and study of its effect on tomatoes stored at room temperature. LWT - Food Science and Technology, 50(1), 272-278. doi:10.1016/j.lwt.2012.05.018Garcia, L. C., Pereira, L. M., de Luca Sarantópoulos, C. I. G., & Hubinger, M. D. (2010). Selection of an Edible Starch Coating for Minimally Processed Strawberry. Food and Bioprocess Technology, 3(6), 834-842. doi:10.1007/s11947-009-0313-9Boubaker, H., Karim, H., El Hamdaoui, A., Msanda, F., Leach, D., Bombarda, I., … Ait Ben Aoumar, A. (2016). Chemical characterization and antifungal activities of four Thymus species essential oils against postharvest fungal pathogens of citrus. Industrial Crops and Products, 86, 95-101. doi:10.1016/j.indcrop.2016.03.036Junqueira-Gonçalves, M. P., Alarcón, E., & Niranjan, K. (2013). Development of antifungal packaging for berries extruded from recycled PET. Food Control, 33(2), 455-460. doi:10.1016/j.foodcont.2013.03.031Tesfay, S. Z., Magwaza, L. S., Mbili, N., & Mditshwa, A. (2017). Carboxyl methylcellulose (CMC) containing moringa plant extracts as new postharvest organic edible coating for Avocado ( Persea americana Mill.) fruit. Scientia Horticulturae, 226, 201-207. doi:10.1016/j.scienta.2017.08.047Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of Essential Oils in Bioactive Edible Coatings: A Review. Food Engineering Reviews, 3(1), 1-16. doi:10.1007/s12393-010-9031-3Perdones, A., Sánchez-González, L., Chiralt, A., & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32-41. doi:10.1016/j.postharvbio.2012.04.002Valencia-Chamorro, S. A., Pérez-Gago, M. B., Del Río, M. A., & Palou, L. (2010). Effect of Antifungal Hydroxypropyl Methylcellulose-Lipid Edible Composite Coatings on Penicillium Decay Development and Postharvest Quality of Cold-Stored «Ortanique» Mandarins. Journal of Food Science, 75(8), S418-S426. doi:10.1111/j.1750-3841.2010.01801.xAli, A., Noh, N. M., & Mustafa, M. A. (2015). Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food Packaging and Shelf Life, 3, 56-61. doi:10.1016/j.fpsl.2014.10.003Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52(2), 137-145. doi:10.1016/j.postharvbio.2008.11.009Marín, A., Atarés, L., & Chiralt, A. (2017). Improving function of biocontrol agents incorporated in antifungal fruit coatings: a review. Biocontrol Science and Technology, 27(10), 1220-1241. doi:10.1080/09583157.2017.1390068Ruiz-Moyano, S., Martín, A., Villalobos, M. C., Calle, A., Serradilla, M. J., Córdoba, M. G., & Hernández, A. (2016). Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Food Microbiology, 57, 45-53. doi:10.1016/j.fm.2016.01.003Marín, A., Cháfer, M., Atarés, L., Chiralt, A., Torres, R., Usall, J., & Teixidó, N. (2016). Effect of different coating-forming agents on the efficacy of the biocontrol agent Candida sake CPA-1 for control of Botrytis cinerea on grapes. Biological Control, 96, 108-119. doi:10.1016/j.biocontrol.2016.02.012Marín, A., Atarés, L., Cháfer, M., & Chiralt, A. (2017). Stability of biocontrol products carrying Candida sake CPA-1 in starch derivatives as a function of water activity. Biocontrol Science and Technology, 27(2), 268-287. doi:10.1080/09583157.2017.1279587Noshirvani, N., Ghanbarzadeh, B., Gardrat, C., Rezaei, M. R., Hashemi, M., Le Coz, C., & Coma, V. (2017). Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids, 70, 36-45. doi:10.1016/j.foodhyd.2017.03.015Perdones, Á., Vargas, M., Atarés, L., & Chiralt, A. (2014). Physical, antioxidant and antimicrobial properties of chitosan–cinnamon leaf oil films as affected by oleic acid. Food Hydrocolloids, 36, 256-264. doi:10.1016/j.foodhyd.2013.10.003Acosta, S., Chiralt, A., Santamarina, P., Rosello, J., González-Martínez, C., & Cháfer, M. (2016). Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocolloids, 61, 233-240. doi:10.1016/j.foodhyd.2016.05.008Avila-Sosa, R., Palou, E., Jiménez Munguía, M. T., Nevárez-Moorillón, G. V., Navarro Cruz, A. R., & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153(1-2), 66-72. doi:10.1016/j.ijfoodmicro.2011.10.017Wang, Y., Li, Y., Xu, W., Zheng, X., Zhang, X., Abdelhai, M. H., … Zhang, H. (2018). Exploring the effect of β-glucan on the biocontrol activity of Cryptococcus podzolicus against postharvest decay of apples and the possible mechanisms involved. Biological Control, 121, 14-22. doi:10.1016/j.biocontrol.2018.02.001De Paiva, E., Serradilla, M. J., Ruiz-Moyano, S., Córdoba, M. G., Villalobos, M. C., Casquete, R., & Hernández, A. (2017). Combined effect of antagonistic yeast and modified atmosphere to control Penicillium expansum infection in sweet cherries cv. Ambrunés. International Journal of Food Microbiology, 241, 276-282. doi:10.1016/j.ijfoodmicro.2016.10.033Zhou, Y., Zhang, L., & Zeng, K. (2016). Efficacy of Pichia membranaefaciens combined with chitosan against Colletotrichum gloeosporioides in citrus fruits and possible modes of action. Biological Control, 96, 39-47. doi:10.1016/j.biocontrol.2016.02.001Gava, C. A. T., & Pinto, J. M. (2016). Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f. sp. melonis using seed treatment with Trichoderma spp. and liquid compost. Biological Control, 97, 13-20. doi:10.1016/j.biocontrol.2016.02.010Zeng, L., Yu, C., Fu, D., Lu, H., Zhu, R., Lu, L., … Yu, T. (2015). Improvement in the effectiveness of Cryptococcus laurentii to control postharvest blue mold of pear by its culture in β-glucan amended nutrient broth. Postharvest Biology and Technology, 104, 26-32. doi:10.1016/j.postharvbio.2015.03.005Parafati, L., Vitale, A., Restuccia, C., & Cirvilleri, G. (2015). Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiology, 47, 85-92. doi:10.1016/j.fm.2014.11.01
Medida de las propiedades físicas de productos de fruta en polvo
[ES] Un producto instantáneo es aquel que requiere muy poco esfuerzo para reconstituirse. La rehidratación de un polvo comporta diferentes aspectos, como su capacidad de humedecerse, dispersarse y solubilizarse. El comportamiento de estas propiedades físicas del polvo durante la rehidratación conforma el concepto de propiedades instantáneas. Para que un polvo exhiba buenas características de reconstitución y para que sea llamado instantáneo, se requiere un equilibrio apropiado entre estas propiedades. Los factores que influyen sobre estas propiedades son el tamaño y densidad de las partículas y las propiedades de superficie, entre otras. En este trabajo se pretende medir la instantaneidad de un producto en polvo obtenido a partir de pomelo liofilizado y atomizado. Se estudiará el efecto de la composición, del tamaño de partícula y de la temperatura de rehidratación en atributos tales como la humectabilidad, la dispersabilidad y la solubilidad.[EN] Fruit powders with low values of water content, may cause problems like
high hygroscopicity, caking and stickiness. The characteristics of these
products affect the instant properties, that is, its ability to be reconstituted in a
liquid medium. Instant and physical properties related to the stability of freeze
and spray dried grapefruit juice powder have been measured, to which various
stabilizers solutes (arabic gum, starch octenyl succinate, isolated whey
protein, bamboo fiber, maltodextrin, carboxymethylcellulose) have been
added, and also characterized. Regarding the stability, particle size,
hygroscopicity, degree of caking and mechanical properties have been
evaluated. The wettability, dispersibility and solubility have been measured as
indicators of instant properties. The results showed that the bamboo fiber is
less hygroscopic. In turn, both the bamboo fiber and the isolated whey protein
are solutes with less degree of caking, which exhibit good stability
characteristics. The addition of all solutes into the freeze dried samples
reduced hygroscopicity. Moreover, the mechanical properties of solutes were
not influenced by storage conditions, although the maximum force attained
during compression was less in the formulations. Regarding to the instant
properties, the addition of solutes has caused, in general, a decrease of the
wetting time and solubility, which appears to be associated to the composition
of sugars of the formulated samples. The bamboo fiber stood out for being
highly dispersible, but very little soluble[CA] Els baixos valors en contingut d'aigua de les pols de fruites, poden originar
problemes com l'higroscopicitat, enfigassament i atapeïment. Les propietats
d'aquestos productes afecten el grau d'instantaneïtat, és a dir, a la seua
capacitat de reconstituir-se en un medi líquid. S'han mesurat les propietats
físiques relacionades amb la instantaneïtat i amb l'estabilitat de pomelo en
pols obtingut per liofilització i atomització, a què s'han incorporat soluts estabilizants (goma aràbiga, octenil succinato de midó, aïllat de proteïna de
sèrum de llet, fibra de bambú, maltodextrina i carboximetilcelulosa), que també
han sigut caracteritzats. En relació a l'estabilitat, s'ha analitzat la grandària de
partícula, l'higroscopicitat, el grau d'atapeïment i les propietats mecàniques.
Com a indicadors de la instantaneïtat, s'ha mesurat l'humectabilitat, la
dispersabilitat i la solubilitat. Els resultats van mostrar que la fibra de bambú
és menys higroscòpica. Al seu torn, tant la fibra de bambú com l'aïllat de
proteïna de sèrum de llet van ser els soluts menys apelmazables, que exhibix
bones característiques d'estabilitat. La incorporació de tots els soluts a les
mostres liofilitzades va reduir de l'higroscopicitat. Les propietats mecàniques
dels soluts no es van veure influenciades per les condicions
d'emmagatzemament, encara que la força màxima de compressió va ser
menor en les formulacions. Quant a la instantaneïtat, l'addició dels soluts va
provocar en general una disminució del temps d'humectació i de la solubilitat,
la qual cosa sembla estar associada a la composició en sucres de les mostres
formulades. La fibra de bambú va destacar per ser altament dispersable, però
molt poc soluble.Sapper, MI. (2015). MEDIDA DE LAS PROPIEDADES FÍSICAS DE PRODUCTOS DE FRUTA EN POLVO. http://hdl.handle.net/10251/56749.TFG
Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants
[EN] Wettability of coating-forming systems (CFS) based on starch-gellan (80:20) blends, containing or not, emulsified/lecithin-encapsulated thyme essential oil (EO), was analysed in apple, tomato and persimmon fruit. Different concentrations (0-10(5) mg/L) of Tween 85 were incorporated into the CFS in order to know its potentially beneficial effect on the coating spreadability. These fruit skins exhibited high values of the surface tension dispersive component, while being low-energy surfaces (21-29 mN/m). Values of contact angle and surface tension of the starch-gellan solutions were positively affected by the addition of Tween 85 at 5.10(4) mg/L. However, it exerted a negative effect when the CFS contained emulsified or lecithin-encapsulated thyme essential oil. Likewise, wettability of starch-gellan coatings was notably improved with Tween 85 at 5.10(4) mg/L, whereas formulations containing emulsified or encapsulated EO did not require surfactant to improve their already good spreadability.The authors would like to thank the financial support from the Ministerio de Economia y Competitividad (MINECO) of Spain, through the project AGL2016-76699-R. Author Mayra Sapper thanks the Conselleria de Educacion, Investigacion, Cultura y Deporte de la Comunitat Valenciana for the Santiago Grisolfa grant GRISOLIA/2015/001.Sapper, MI.; Bonet, M.; Chiralt, A. (2019). Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants. LWT - Food Science and Technology. 116:1-8. https://doi.org/10.1016/j.lwt.2019.108574S1811
Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil
[EN] Films based on starch-gellan blends at 9:1 and 8:2 ratios containing emulsified or lecithin encapsulated thyme (Thymus zygis) essential oil (EO) (0.25 or 0.5 g/g polymer), were obtained by casting method and characterized as to their structural, functional (mechanical, barrier and optical) and in vitro antifungal properties against Alternaria alternata (AA) and Botryotinia fuckeliana (BF). The EO retention during the film formation was also quantified. Lecithin encapsulation of the EO allowed for greater oil retention (45-55%), which enhanced the antifungal activity of the films, which were more effective against BF than AA. All films exhibited high oxygen barrier capacity, while lecithin improved the films water barrier properties and gloss, conferring them with a slightly brownish color. Lecithin also reduced the film stiffness and resistance to break and extensibility. Of the studied formulations, 8:2 S:G films with lecithin-encapsulated EO were very effective at controlling fungal growth, while exhibiting adequate functional properties as packaging/coating materials.The authors acknowledge the financial support for this study from the Ministerio de Economia y Competitividad (MINECO) of Spain, through the project AGL2016-76699-R. Mayra Sapper thanks the Conselleria de Educacion, Investigacion, Cultura y Deporte de la Comunitat Valenciana for the Santiago Grisolia grant GRISOLIA/2015/001.Sapper, MI.; Wilcaso, P.; Santamarina Siurana, MP.; Rosello Caselles, J.; Chiralt, A. (2018). Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil. Food Control. 92:505-515. https://doi.org/10.1016/j.foodcont.2018.05.004S5055159