9 research outputs found
The study of the improvement of mechanical performance of asphalt modified by the optimization of mixing time of EVA bitumen
To improve the performances of a bitumen, the mixing time of bitumen-EVA is studied using two contents of EVA (3 and 5%). For the study analytical and chemical tests are carried out such as penetrability, softening point, ductility, FTIR, DSC, MEB and the storage stability. The aim of this work is to change and optimize the formula of the sample of EVA, which are not conform with the Algerian standards. This work showed that the mixing time is function of the content polymer. The mixing time has a strong effect on the properties; in fact it has improved the mechanical characteristics of the bituminous. Also, the mechanical tests showed that the permanent deformations and the indirect tensile strength at the temperatures of service resistances are improved
Effect of the Plasma Deposition Parameters on the Properties of Ti/TiC Multilayers for Hard Coatings Applications
Titanium carbide (TiC) hard coatings have been obtained on steel and silicon substrates by rf magnetron sputtering process. Two layer coatings have been deposited in order to improve adhesion on steel. The lower layer was titanium metal and the upper TiC layer was obtained by reactive sputtering of the titanium target in Ar and methane gas mixture. The study confirmed that the TiC layer composition depends on the reactive sputtering gas composition and substrate bias voltage. Film microhardness was measured by microindentation. Measurement results showed that the hardness coating depends on the microstructure of our coatings and the polarization of bias substrate is an important parameter to control the microstructure
Effect of the Plasma Deposition Parameters on the Properties of Ti/TiC Multilayers for Hard Coatings Applications
Titanium carbide (TiC) hard coatings have been obtained on steel and silicon substrates by rf magnetron sputtering process. Two layer coatings have been deposited in order to improve adhesion on steel. The lower layer was titanium metal and the upper TiC layer was obtained by reactive sputtering of the titanium target in Ar and methane gas mixture. The study confirmed that the TiC layer composition depends on the reactive sputtering gas composition and substrate bias voltage. Film microhardness was measured by microindentation. Measurement results showed that the hardness coating depends on the microstructure of our coatings and the polarization of bias substrate is an important parameter to control the microstructure