103 research outputs found

    Cycling of biogenic elements drives biogeochemical gold cycling

    Get PDF
    Available online 13 DecemberMicroorganisms are key-drivers of carbon-, nitrogen-, sulfur- and metal cycling on Earth. Through their metabolic activities they directly and indirectly link element cycles. This leads to the cycling of elements through the Earth’s ecosystems from/to the atmosphere to/from the lithosphere. Gold (Au) is a rare, redox-active, noble transition metal, which is neither essential as a nutrient nor, reputedly, mobile in the environment. Therefore, observations published in recent decades, which have shown that gold is highly mobile and subject to biogeochemical cycling largely driven by microbiota, have surprised many. Questions concerning the fundamental biogeochemical processes mediating gold cycling, the organisms involved and the benefits they may gain have puzzled researchers. In this review we integrate the cycling of the major biogenic elements carbon, nitrogen and sulfur with that of gold. We identify key-processes that drive gold cycling and evaluate how different chemical Au(I/III)-species affect microbiota that form biofilms on gold-bearing minerals and placer gold particles. Additionally, we assess how the cycling of the gold-associated metal(loid)s silver, copper, iron, manganese, mercury and arsenic is linked to that of gold. Microbially produced compounds resulting from carbon, nitrogen, sulfur, iron and manganese cycling (e.g., organic acids, cyanides, (thio)sulfates, ammonium, iron sulfides/oxy-hydroxides and managanese oxides) can each play important roles for the mobilization of gold. Highly toxic, mobile Au(I/III)-complexes affect the phylogenetic and functional composition of microbial communities resident on gold particles. This leads to gold detoxification coupled to active and passive biomineralization, and ultimately the aggregation and (trans)formation of metallic gold particles. The complex interplay between gold, microbiota and physicochemical conditions modified by these organisms (e.g., redox or pH) has throughout the Earth’s history led to the aggregation of gold particles (grains to nuggets), led to the formation of the largest known gold deposit (i.e., Witwatersrand paleo-placer), and the largest gold reservoir in seawater. Today it opens up exciting biotechnological pathways for mineral exploration, processing and remediation.Santonu Kumar Sanyal, Jeremiah Shuster, Frank Reit

    A genomic perspective of metal-resistant bacteria from gold particles: Possible survival mechanisms during gold biogeochemical cycling

    Get PDF
    Advance Access Publication Date: 4 June 2020.A bacterial consortium was enriched from gold particles that 'experienced' ca. 80 years of biotransformation within waste-rock piles (Australia). This bacterial consortium was exposed to 10 µM AuCl3 to obtain Au-tolerant bacteria. From these isolates, Serratia sp. and Stenotrophomonas sp. were the most Au-tolerant and reduced soluble Au as pure gold nanoparticles, indicating that passive mineralisation is a mechanism for mediating the toxic effect of soluble Au produced during particle dissolution. Genome-wide analysis demonstrated that these isolates also possessed various genes that could provide cellular defence enabling survival under heavy-metal stressed condition by mediating the toxicity of heavy metals through active efflux/reduction. Diverse metal-resistant genes or genes clusters (cop, cus, czc, znt, ars) were detected, which could confer resistance to soluble Au. Comparative genome analysis revealed that the majority of detected heavy-metal resistant genes were similar (i.e. orthologous) to those genes of Cupriavidus metallidurans CH34. The detection of heavy-metal resistance, nutrient cycling, and biofilm formation genes (pgaABCD, bsmA, hmpS) may have indirect yet important roles when dealing with soluble Au during particle dissolution. In conclusion, the physiological and genomic results suggest that bacteria living on gold particles would likely use various genes to ensure survival during Au biogeochemical cycling.Santonu Kumar Sanyal, Frank Reith and Jeremiah Shuste

    Revisiting Noether gauge symmetry for F(R) theory of gravity

    Full text link
    Noether gauge symmetry for F(R) theory of gravity has been explored recently. The fallacy is that, even after setting gauge to vanish, the form of F(R) \propto R^n (where n \neq 1, is arbitrary) obtained in the process, has been claimed to be an outcome of gauge Noether symmetry. On the contrary, earlier works proved that any nonlinear form other than F(R) \propto R^3/2 is obscure. Here, we show that, setting gauge term zero, Noether equations are satisfied only for n = 2, which again does not satisfy the field equations. Thus, as noticed earlier, the only admissible form that Noether symmetry is F(R) \propto R^3/2 . Noether symmetry with non-zero gauge has also been studied explicitly here, to show that it does not produce anything new.Comment: 9 pages, To appear in Astrophysics Space Scienc

    From biomolecules to biogeochemistry: Exploring the interaction of an indigenous bacterium with gold

    Get PDF
    Specialised microbial communities colonise the surface of gold particles in soils/sediments, and catalyse gold dissolution and re-precipitation, thereby contributing to the environmental mobility and toxicity of this ‘inert’ precious metal. We assessed the proteomic and physiological response of Serratia proteamaculans, the first metabolically active bacterium enriched and isolated directly from natural gold particles, when exposed to toxic levels of soluble Au3+ (10 μM). The results were compared to a metal-free blank, and to cultures exposed to similarly toxic levels of soluble Cu2+ (0.1 mM); Cu was chosen for comparison because it is closely associated with Au in nature due to similar geochemical properties. A total of 273 proteins were detected from the cells that experienced the oxidative effects of soluble Au, of which 139 (51%) were upregulated with either sole expression (31%) or had synthesis levels greater than the Au-free control (20%). The majority (54%) of upregulated proteins were functionally different from up-regulated proteins in the bacteria-copper treatment. These proteins were related to broad functions involving metabolism and biogenesis, followed by cellular process and signalling, indicating significant specificity for Au. This proteomic study revealed that the bacterium upregulates the synthesis of various proteins related to oxidative stress response (e.g., Monothiol-Glutaredoxin, Thiol Peroxidase, etc.) and cellular damage repair, which leads to the formation of metallic gold nanoparticles less toxic than ionic gold. Therefore, indigenous bacteria may mediate the toxicity of Au through two different yet simultaneous processes: i) repairing cellular components by replenishing damaged proteins and ii) neutralising reactive oxygen species (ROS) by up-regulating the synthesis of antioxidants. By connecting the fields of molecular bacteriology and environmental biogeochemistry, this study is the first step towards the development of biotechnologies based on indigenous bacteria applied to gold bio-recovery and bioremediation of contaminated environments.Santonu K. Sanyal, Tara Pukala, Parul Mittal, Frank Reith, Joël Brugger, Barbara Etschmann, Jeremiah Shuste
    • …
    corecore