7 research outputs found

    On Parity Decision Trees for Fourier-Sparse Boolean Functions

    Get PDF
    We study parity decision trees for Boolean functions. The motivation of our study is the log-rank conjecture for XOR functions and its connection to Fourier analysis and parity decision tree complexity. Our contributions are as follows. Let f : ??? ? {-1, 1} be a Boolean function with Fourier support ? and Fourier sparsity k. - We prove via the probabilistic method that there exists a parity decision tree of depth O(?k) that computes f. This matches the best known upper bound on the parity decision tree complexity of Boolean functions (Tsang, Wong, Xie, and Zhang, FOCS 2013). Moreover, while previous constructions (Tsang et al., FOCS 2013, Shpilka, Tal, and Volk, Comput. Complex. 2017) build the trees by carefully choosing the parities to be queried in each step, our proof shows that a naive sampling of the parities suffices. - We generalize the above result by showing that if the Fourier spectra of Boolean functions satisfy a natural "folding property", then the above proof can be adapted to establish existence of a tree of complexity polynomially smaller than O(? k). More concretely, the folding property we consider is that for most distinct ?, ? in ?, there are at least a polynomial (in k) number of pairs (?, ?) of parities in ? such that ?+? = ?+?. We make a conjecture in this regard which, if true, implies that the communication complexity of an XOR function is bounded above by the fourth root of the rank of its communication matrix, improving upon the previously known upper bound of square root of rank (Tsang et al., FOCS 2013, Lovett, J. ACM. 2016). - Motivated by the above, we present some structural results about the Fourier spectra of Boolean functions. It can be shown by elementary techniques that for any Boolean function f and all (?, ?) in binom(?,2), there exists another pair (?, ?) in binom(?,2) such that ? + ? = ? + ?. One can view this as a "trivial" folding property that all Boolean functions satisfy. Prior to our work, it was conceivable that for all (?, ?) ? binom(?,2), there exists exactly one other pair (?, ?) ? binom(?,2) with ? + ? = ? + ?. We show, among other results, that there must exist several ? ? ??? such that there are at least three pairs of parities (??, ??) ? binom(?,2) with ??+?? = ?. This, in particular, rules out the possibility stated earlier

    Lifting to Parity Decision Trees via Stifling

    Get PDF
    We show that the deterministic decision tree complexity of a (partial) function or relation f lifts to the deterministic parity decision tree (PDT) size complexity of the composed function/relation f ◦ g as long as the gadget g satisfies a property that we call stifling. We observe that several simple gadgets of constant size, like Indexing on 3 input bits, Inner Product on 4 input bits, Majority on 3 input bits and random functions, satisfy this property. It can be shown that existing randomized communication lifting theorems ([Göös, Pitassi, Watson. SICOMP'20], [Chattopadhyay et al. SICOMP'21]) imply PDT-size lifting. However there are two shortcomings of this approach: first they lift randomized decision tree complexity of f, which could be exponentially smaller than its deterministic counterpart when either f is a partial function or even a total search problem. Second, the size of the gadgets in such lifting theorems are as large as logarithmic in the size of the input to f. Reducing the gadget size to a constant is an important open problem at the frontier of current research. Our result shows that even a random constant-size gadget does enable lifting to PDT size. Further, it also yields the first systematic way of turning lower bounds on the width of tree-like resolution proofs of the unsatisfiability of constant-width CNF formulas to lower bounds on the size of tree-like proofs in the resolution with parity system, i.e., Res(☉), of the unsatisfiability of closely related constant-width CNF formulas

    One-way communication complexity and non-adaptive decision trees

    Get PDF
    We study the relationship between various one-way communication complexity measures of a composed function with the analogous decision tree complexity of the outer function. We consider two gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs. More generally, we show the following when the gadget is Inner Product on 2b input bits for all b ≥ 2, denoted IP. If f is a total Boolean function that depends on all of its n input bits, then the bounded-error one-way quantum communication complexity of f ◦ IP equals Ω(n(b - 1)). If f is a partial Boolean function, then the deterministic one-way communication complexity of f ◦ IP is at least Ω(b · D→dt (f)), where D→dt (f) denotes non-adaptive decision tree complexity of f. To prove our quantum lower bound, we first show a lower bound on the VC-dimension of f ◦ IP. We then appeal to a result of Klauck [STOC’00], which immediately yields our quantum lower bound. Our deterministic lower bound relies on a combinatorial result independently proven by Ahlswede and Khachatrian [Adv. Appl. Math.’98], and Frankl and Tokushige [Comb.’99]. It is known due to a result of Montanaro and Osborne [arXiv’09] that the deterministic one-way communication complexity of f ◦ XOR equals the non-adaptive parity decision tree complexity of f. In contrast, we show the following when the inner gadget is the AND function on 2 input bits. There exists a function for which even the quantum non-adaptive AND decision tree complexity of f is exponentially large in the deterministic one-way communication complexity of f ◦ AND. However, for symmetric functions f, the non-adaptive AND decision tree complexity of f is at most quadratic in the (even two-way) communication complexity of f ◦ AND. In view of the first bullet, a lower bound on non-adaptive AND decision tree complexity of f does not lift to a lower bound on one-way communication complexity of f ◦ AND. The proof of the first bullet above uses the well-studied Odd-Max-Bit function. For the second bullet, we first observe a connection between the one-way communication complexity of f and the Möbius sparsity of f, and then give a lower bound on the Möbius sparsity of symmetric functions. An upper bound on the non-adaptive AND decision tree complexity of symmetric functions follows implicitly from prior work on combinatorial group testing; for the sake of completeness, we include a proof of this result. It is well known that the rank of the communication matrix of a function F is an upper bound on its deterministic one-way communication complexity. This bound is known to be tight for some F. However, in our final result we show that this is not the case when F = f ◦ AND. More precisely we show that for all f, the deterministic one-way communication complexity of F = f ◦ AND is at most (rank(MF))(1 - Ω(1)), where MF denotes the communication matrix of F

    Lifting to parity decision trees via Stifling

    Get PDF
    We show that the deterministic decision tree complexity of a (partial) function or relation f lifts to the deterministic parity decision tree (PDT) size complexity of the composed function/relation f ◦ g as long as the gadget g satisfies a property that we call stifling. We observe that several simple gadgets of constant size, like Indexing on 3 input bits, Inner Product on 4 input bits, Majority on 3 input bits and random functions, satisfy this property. It can be shown that existing randomized communication lifting theorems ([Göös, Pitassi, Watson. SICOMP'20], [Chattopadhyay et al. SICOMP'21]) imply PDT-size lifting. However there are two shortcomings of this approach: first they lift randomized decision tree complexity of f, which could be exponentially smaller than its deterministic counterpart when either f is a partial function or even a total search problem. Second, the size of the gadgets in such lifting theorems are as large as logarithmic in the size of the input to f. Reducing the gadget size to a constant is an important open problem at the frontier of current research. Our result shows that even a random constant-size gadget does enable lifting to PDT size. Further, it also yields the first systematic way of turning lower bounds on the width of tree-like resolution proofs of the unsatisfiability of constant-width CNF formulas to lower bounds on the size of tree-like proofs in the resolution with parity system, i.e., Res(☉), of the unsatisfiability of closely related constant-width CNF formulas

    Tight Chang’s-lemma-type bounds for Boolean functions

    Get PDF
    Chang’s lemma (Duke Mathematical Journal, 2002) is a classical result in mathematics, with applications spanning across additive combinatorics, combinatorial number theory, analysis of Boolean functions, communication complexity and algorithm design. For a Boolean function f that takes values in {-1, 1} let r(f) denote its Fourier rank (i.e., the dimension of the span of its Fourier support). For each positive threshold t, Chang’s lemma provides a lower bound on δ(f):= Pr[f(x) = -1] in terms of the dimension of the span of its characters with Fourier coefficients of magnitude at least 1/t. In this work we examine the tightness of Chang’s lemma with respect to the following three natural settings of the threshold: the Fourier sparsity of f, denoted k(f), the Fourier max-supp-entropy of f, denoted k′(f), defined to be the maximum value of the reciprocal of the absolute value of a non-zero Fourier coefficient, the Fourier max-rank-entropy of f, denoted k′′(f), defined to be the minimum t such that characters whose coefficients are at least 1/t in magnitude span a r(f)-dimensional space. In this work we prove new lower bounds on δ(f) in terms of the above measures. One of our lower bounds, δ(f) = Ω (r(f)2/(k(f) log2 k(f))), subsumes and refines the previously best known upper bound r(f) = O(pk(f) log k(f)) on r(f) in terms of k(f) by Sanyal (Theory of Computing, 2019). We improve upon this bound and show r(f) = O(pk(f)δ(f) log k(f)). Another lower bound, δ(f) = Ω (r(f)/(k′′(f) log k(f))), is based on our improvement of a bound by Chattopadhyay, Hatami, Lovett and Tal (ITCS, 2019) on the sum of absolute values of level-1 Fourier coefficients in terms of F2-degree. We further show that Chang’s lemma for the above-mentioned choices of the threshold is asymptotically outperformed by our bounds for most settings of the parameters involved. Next, we show that our bounds are tight for a wide range of the parameters involved, by constructing functions witnessing their tightness. All the functions we construct are modifications of the Addressing function, where we replace certain input variables by suitable functions. Our final contribution is to construct Boolean functions f for which our lower bounds asymptotically match δ(f), and for any choice of the threshold t, the lower bound obtained from Chang’s lemma is asymptotically smaller than δ(f). Our results imply more refined deterministic one-way communication complexity upper bounds for XOR functions. Given the wide-ranging application of Chang’s lemma to areas like additive combinatorics, learning theory and communication complexity, we strongly feel that our refinements of Chang’s lemma will find many more applications
    corecore