420 research outputs found

    Different origin of the ferromagnetic order in (Ga,Mn)As and (Ga,Mn)N

    Full text link
    The mechanism for the ferromagnetic order of (Ga,Mn)As and (Ga,Mn)N is extensively studied over a vast range of Mn concentrations. We calculate the electronic structures of these materials using density functional theory in both the local spin density approximation and the LDA+U scheme, that we have now implemented in the code SIESTA. For (Ga,Mn)As, the LDA+U approach leads to a hole mediated picture of the ferromagnetism, with an exchange constant NβN\beta =~ -2.8 eV. This is smaller than that obtained with LSDA, which overestimates the exchange coupling between Mn ions and the As pp holes. In contrast, the ferromagnetism in wurtzite (Ga,Mn)N is caused by the double-exchange mechanism, since a hole of strong dd character is found at the Fermi level in both the LSDA and the LDA+U approaches. In this case the coupling between the Mn ions decays rapidly with the Mn-Mn separation. This suggests a two phases picture of the ferromagnetic order in (Ga,Mn)N, with a robust ferromagnetic phase at large Mn concentration coexisting with a diluted weak ferromagnetic phase.Comment: 12 pages, 11 figure

    Electronic structure and magnetic properties of metallocene multiple-decker sandwich nanowires

    Full text link
    We present a study of the electronic and magnetic properties of the multiple-decker sandwich nanowires (CP−MCP-M) composed of cyclopentadienyl (CP) rings and 3d transition metal atoms (M=Ti to Ni) using first-principles techniques. We demonstrate using Density Functional Theory that structural relaxation play an important role in determining the magnetic ground-state of the system. Notably, the computed magnetic moment is zero in CP−MnCP-Mn, while in CP−VCP-V a significant turn-up in magnetic moment is evidenced. Two compounds show a half-metallic ferromagnetic ground state CP−Fe/CrCP-Fe/Cr with a gap within minority/majority spin channel. In order to study the effect of electronic correlations upon the half-metallic ground states in CP−CrCP-Cr, we introduce a simplified three-bands Hubbard model which is solved within the Variational Cluster Approach. We discuss the results as a function of size of the reference cluster and the strength of average Coulomb UU and exchange JJ parameters. Our results demonstrate that for the range of studied parameters U=2−4eVU=2-4eV and J=0.6−1.2eVJ=0.6-1.2eV the half-metallic character is not maintained in the presence of local Coulomb interactions.Comment: 9 pages, 9 figures, submited to PR

    A pertubative approach to the Kondo effect in magnetic atoms on nonmagnetic substrates

    Full text link
    Recent experimental advances in scanning tunneling microscopy make the measurement of the conductance spectra of isolated and magnetically coupled atoms on nonmagnetic substrates possible. Notably these spectra are characterized by a competition between the Kondo effect and spin-flip inelastic electron tunneling. In particular they include Kondo resonances and a logarithmic enhancement of the conductance at voltages corresponding to magnetic excitations, two features that cannot be captured by second order perturbation theory in the electron-spin coupling. We have now derived a third order analytic expression for the electron-spin self-energy, which can be readily used in combination with the non-equilibrium Green's function scheme for electron transport at finite bias. We demonstrate that our method is capable of quantitative description the competition between Kondo resonances and spin-flip inelastic electron tunneling at a computational cost significantly lower than that of other approaches. The examples of Co and Fe on CuN are discussed in detail

    Inelastic scattering and heating in a molecular spin pump

    Full text link
    We consider a model for a spin field-effect molecular transistor, where a directed pure spin current is controlled by an external electric field. Inelastic scattering effects of such molecular device are discussed within a framework of full counting statistics for a multi-level molecular system. We propose that the heating of the molecular junction can be controlled by external electric and magnetic fields. Characteristic features of the model are demonstrated by numerical calculations.Comment: 9 pages, 5 figure

    Electric field response of strongly correlated one-dimensional metals: a Bethe-Ansatz density functional theory study

    Full text link
    We present a theoretical study on the response properties to an external electric field of strongly correlated one-dimensional metals. Our investigation is based on the recently developed Bethe-Ansatz local density approximation (BALDA) to the density functional theory formulation of the Hubbard model. This is capable of describing both Luttinger liquid and Mott-insulator correlations. The BALDA calculated values for the static linear polarizability are compared with those obtained by numerically accurate methods, such as exact (Lanczos) diagonalization and the density matrix renormalization group, over a broad range of parameters. In general BALDA linear polarizabilities are in good agreement with the exact results. The response of the exact exchange and correlation potential is found to point in the same direction of the perturbing potential. This is well reproduced by the BALDA approach, although the fine details depend on the specific parameterization for the local approximation. Finally we provide a numerical proof for the non-locality of the exact exchange and correlation functional.Comment: 8 pages and 8 figure

    Resonant and Kondo tunneling through molecular magnets

    Full text link
    Transport through molecular magnets is studied in the regime of strong coupling to the leads. We consider a resonant-tunneling model where the electron spin in a quantum dot or molecule is coupled to an additional local, anisotropic spin via exchange interaction. The two opposite regimes dominated by resonant tunneling and by Kondo transport, respectively, are considered. In the resonant-tunneling regime, the stationary state of the impurity spin is calculated for arbitrarily strong molecule-lead coupling using a master-equation approach, which treats the exchange interaction perturbatively. We find that the characteristic fine structure in the differential conductance persists even if the hybridization energy exceeds thermal energies. Transport in the Kondo regime is studied within a diagrammatic approach. We show that magnetic anisotropy gives rise to a splitting of the Kondo peak at low bias voltages.Comment: 13 pages, 5 figures, version as publishe

    Asymmetric I-V characteristics and magnetoresistance in magnetic point contacts

    Full text link
    We present a theoretical study of the transport properties of magnetic point contacts under bias. Our calculations are based on the Keldish's non-equilibrium Green's function formalism combined with a self-consistent empirical tight-binding Hamiltonian, which describes both strong ferromagnetism and charging effects. We demonstrate that large magnetoresistance solely due to electronic effects can be found when a sharp domain wall forms inside a magnetic atomic-scale point contact. Moreover we show that the symmetry of the II-VV characteristic depends on the position of the domain wall in the constriction. In particular diode-like curves can arise when the domain wall is placed off-center within the point contact, although the whole structure does not present any structural asymmetry.Comment: 7 figures, submitted to PR

    Magnetic interaction of Co ions near the {10\bar{1}0} ZnO surface

    Full text link
    Co-doped ZnO is the prototypical dilute magnetic oxide showing many of the characteristics of ferromagnetism. The microscopic origin of the long range order however remains elusive, since the conventional mechanisms for the magnetic interaction, such as super-exchange and double exchange, fail either at the fundamental or at a quantitative level. Intriguingly, there is a growing evidence that defects both in point-like or extended form play a fundamental role in driving the magnetic order. Here we explore one of such possibilities by performing {\it ab initio} density functional theory calculations for the magnetic interaction of Co ions at or near a ZnO \{101ˉ\bar{1}0\} surface. We find that extended surface states can hybridize with the ee-levels of Co and efficiently mediate the magnetic order, although such a mechanism is effective only for ions placed in the first few atomic planes near the surface. We also find that the magnetic anisotropy changes at the surface from an hard-axis easy-plane to an easy axis, with an associated increase of its magnitude. We then conclude that clusters with high densities of surfacial Co ions may display blocking temperatures much higher than in the bulk

    Spin blockade at semiconductor/ferromagnet junctions

    Full text link
    We study theoretically extraction of spin-polarized electrons at nonmagnetic semiconductor/ferromagnet junctions. The outflow of majority spin electrons from the semiconductor into the ferromagnet leaves a cloud of minority spin electrons in the semiconductor region near the junction, forming a local spin-dipole configuration at the semiconductor/ferromagnet interface. This minority spin cloud can limit the majority spin current through the junction creating a pronounced spin-blockade at a critical current. We calculate the critical spin-blockade current in both planar and cylindrical geometries and discuss possible experimental tests of our predictions.Comment: to be published in PR

    Machine Learning Predictions of High-Curie-Temperature Materials

    Full text link
    Technologies that function at room temperature often require magnets with a high Curie temperature, TCT_\mathrm{C}, and can be improved with better materials. Discovering magnetic materials with a substantial TCT_\mathrm{C} is challenging because of the large number of candidates and the cost of fabricating and testing them. Using the two largest known data sets of experimental Curie temperatures, we develop machine-learning models to make rapid TCT_\mathrm{C} predictions solely based on the chemical composition of a material. We train a random forest model and a kk-NN one and predict on an initial dataset of over 2,500 materials and then validate the model on a new dataset containing over 3,000 entries. The accuracy is compared for multiple compounds' representations ("descriptors") and regression approaches. A random forest model provides the most accurate predictions and is not improved by dimensionality reduction or by using more complex descriptors based on atomic properties. A random forest model trained on a combination of both datasets shows that cobalt-rich and iron-rich materials have the highest Curie temperatures for all binary and ternary compounds. An analysis of the model reveals systematic error that causes the model to over-predict low-TCT_\mathrm{C} materials and under-predict high-TCT_\mathrm{C} materials. For exhaustive searches to find new high-TCT_\mathrm{C} materials, analysis of the learning rate suggests either that much more data is needed or that more efficient descriptors are necessary.Comment: 9 pages, 11 figures, accepted to Applied Physics Letters, special issue "Accelerate Materials Discovery and Phenomena
    • …
    corecore